当前位置: X-MOL 学术Jpn. J. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Conformal embeddings of affine vertex algebras in minimal W -algebras II: decompositions
Japanese Journal of Mathematics ( IF 1.5 ) Pub Date : 2017-07-31 , DOI: 10.1007/s11537-017-1621-x
Dražen Adamović , Victor G. Kac , Pierluigi Möseneder Frajria , Paolo Papi , Ozren Perše

We present methods for computing the explicit decomposition of the minimal simple affine W-algebra \({W_k(\mathfrak{g}, \theta)}\) as a module for its maximal affine subalgebra \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) at a conformal level k, that is, whenever the Virasoro vectors of \({W_k(\mathfrak{g}, \theta)}\) and \({\mathscr{V}_k(\mathfrak{g}^\natural)}\) coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when \({\mathfrak{g}^{\natural}}\) is a semisimple Lie algebra, we show that, for a suitable conformal level k, \({W_k(\mathfrak{g}, \theta)}\) is isomorphic to an extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) by its simple module. We are able to prove that in certain cases \({W_k(\mathfrak{g}, \theta)}\) is a simple current extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\). In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra \({W_{k}(\mathit{sl}(4), \theta)}\) at k = −8/3. We prove, as conjectured in [3], that \({W_{k}(\mathit{sl}(4), \theta)}\) is isomorphic to the vertex algebra \({\mathscr{R}^{(3)}}\), and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra \({V_k (\mathit{sl}(n))}\) at certain admissible levels and for \({V_k (\mathit{sl}(m \vert n)), m\ne n, m,n\geq 1}\) at arbitrary levels.

中文翻译:

仿射顶点代数在最小W-代数II中的共形嵌入:分解

我们提出了计算最小简单仿射W-代数\({W_k(\ mathfrak {g},\ theta)} \)作为其最大仿射子代数\({\ mathscr {V} _k (\ mathfrak {g} ^ {\ natural})} \)处于共形水平k,也就是说,每当Virasoro向量为\({W_k(\ mathfrak {g},\ theta)} \)\({ \ mathscr {V} _k(\ mathfrak {g} ^ \ natural)} \)一致。特别强调了仿射融合规则在确定分支规则中的应用。在几乎所有情况下,当\({\ mathfrak {g} ^ {\ natural}} \)是半简单的Lie代数时,我们证明,对于合适的保形能级k\({W_k(\ mathfrak {G},\ THETA)} \)是同构的延伸\({\ mathscr {V} _K(\ mathfrak {G} ^ {\天然})} \)由它的简单模块。我们能够证明在某些情况下\({W_k(\ mathfrak {g},\ theta)} \)\({\ mathscr {V} _k(\ mathfrak {g} ^ {\自然})} \)。为了在保形的水平来分析更复杂的非简单的电流扩展,我们给出了简单的显式实现W¯¯代数\({W_ {K}(\ mathit {SL}(4),\ THETA)} \)ķ  = -8/3。正如[3]中的推测,我们证明\({W_ {k}(\ mathit {sl}(4),\ theta)} \)与顶点代数\({\ mathscr {R} ^ { (3)}} \),并使用筛选算子构造无限多个奇异矢量。我们还为顶点代数\({V_k(\ mathit {sl}(n))} \\)和某些特定的\({V_k(\ mathit {sl}(m \ vert n)),m \ ne n,m,n \ geq 1} \)在任意级别。
更新日期:2017-07-31
down
wechat
bug