当前位置: X-MOL 学术Des. Autom. Embed. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nested genetic algorithm for highly reliable and efficient embedded system design
Design Automation for Embedded Systems ( IF 1.4 ) Pub Date : 2020-03-06 , DOI: 10.1007/s10617-020-09234-6
Adeel Israr , Mohammad Kaleem , Sajid Nazir , Hamid Turab Mirza , Sorin Alexander Huss

Modern embedded systems must have high reliability and performance. They should be able to tolerate both hard as well as soft errors occurring in the resources constituting the system. Reliability must be part of the system design and the system must consist of non expensive off-the-shelf resources. A system-level design process of reliable system demands efficient reliability evaluation of the explored design alternatives (DA). This work presents a new approach to accelerate the calculation of reliability and execution time of the system and thereby suggests the design space exploration for a reliable system. A new data structure denoted as system error decision diagram (SEDD) is proposed, which is based on both binary decision diagrams to model hard errors and zero-suppressed decision diagrams to model soft errors. The construction of the SEDD diagram and the calculation of reliability and execution time are explained in an algorithmic way. SEDD is found to be better in terms of memory requirements and construction time compared to other models available in the literature. Using SEDD and the corresponding algorithms, a nested genetic algorithm is constructed that designs system for lifetime reliability and execution time. The result of the design space exploration algorithm is a set of Pareto DAs. A so-called ‘human designer’ is thus able to select one of the best alternative that represents the given system requirements. The nested genetic algorithm and its benefits are illustrated using a real-life embedded application from automotive domain.



中文翻译:

嵌套遗传算法用于高度可靠和高效的嵌入式系统设计

现代嵌入式系统必须具有高可靠性和高性能。它们应该能够容忍在构成系统资源中出现的硬错误和软错误。可靠性必须是系统设计的一部分,并且系统必须由不昂贵的现货资源组成。可靠系统的系统级设计过程要求对探索的设计替代方案(DA)进行有效的可靠性评估。这项工作提出了一种新方法,可以加快系统可靠性和执行时间的计算速度,从而为可靠的系统提供设计空间探索。提出了一种新的数据结构,称为系统错误决策图(SEDD),该数据结构既基于二进制决策图来建模硬错误,又基于零抑制决策图来建模软错误。SEDD图的构建以及可靠性和执行时间的计算以算法方式进行了说明。与文献中提供的其他模型相比,发现SEDD在内存需求和构建时间方面更好。使用SEDD和相应的算法,构建了嵌套遗传算法,以设计系统来实现生命周期可靠性和执行时间。设计空间探索算法的结果是一组Pareto DA。因此,所谓的“人工设计师”能够选择代表给定系统需求的最佳替代方案之一。使用汽车领域的现实嵌入式应用程序说明了嵌套遗传算法及其优势。与文献中提供的其他模型相比,发现SEDD在内存需求和构建时间方面更好。使用SEDD和相应的算法,构建了嵌套遗传算法,以设计系统来实现生命周期可靠性和执行时间。设计空间探索算法的结果是一组Pareto DA。因此,所谓的“人工设计师”能够选择代表给定系统需求的最佳替代方案之一。使用汽车领域的现实嵌入式应用程序说明了嵌套遗传算法及其优势。与文献中提供的其他模型相比,发现SEDD在内存需求和构建时间方面更好。使用SEDD和相应的算法,构造了一个嵌套遗传算法,以设计系统来实现生命周期可靠性和执行时间。设计空间探索算法的结果是一组Pareto DA。因此,所谓的“人工设计师”能够选择代表给定系统需求的最佳替代方案之一。使用汽车领域的现实嵌入式应用程序说明了嵌套遗传算法及其优势。构造了一个嵌套的遗传算法,以设计系统的寿命可靠性和执行时间。设计空间探索算法的结果是一组Pareto DA。因此,所谓的“人工设计师”能够选择代表给定系统需求的最佳替代方案之一。使用汽车领域的现实嵌入式应用程序说明了嵌套遗传算法及其优势。构造了一个嵌套的遗传算法,以设计系统的寿命可靠性和执行时间。设计空间探索算法的结果是一组Pareto DA。因此,所谓的“人工设计师”能够选择代表给定系统需求的最佳替代方案之一。使用汽车领域的实际嵌入式应用程序说明了嵌套遗传算法及其优势。

更新日期:2020-03-06
down
wechat
bug