当前位置: X-MOL 学术J. Micro Nanopatter. Mater. Metrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating extreme ultraviolet radiation chemistry with first-principles quantum chemistry calculations
Journal of Micro/Nanopatterning, Materials, and Metrology ( IF 2 ) Pub Date : 2020-08-01 , DOI: 10.1117/1.jmm.19.3.034601
Jonathan H. Ma 1 , Han Wang 2 , David Prendergast 2 , Andrew Neureuther 1 , Patrick Naulleau 1
Affiliation  

In extreme ultraviolet (EUV) lithography, chemistry is driven by secondary electrons. A deeper understanding of these processes is needed. However, electron-driven processes are inherently difficult to experimentally characterize for EUV materials, impeding targeted material engineering. A computational framework is needed to provide information for rational material engineering and identification at a molecular level. We demonstrate that density functional theory calculations can fulfill this purpose. We first demonstrate that primary electron energy spectrum can be predicted accurately. Second, the dynamics of a photoacid generator upon excitation or electron attachment are studied with ab-initio molecular dynamics calculations. Third, we demonstrate that electron attachment affinity is a good predictor of reduction potential and dose to clear. The correlation between such calculations and experiments suggests that these methods can be applied to computationally screen and design molecular components of EUV material and speed up the development process.

中文翻译:

用第一性原理量子化学计算研究极端紫外线辐射化学

在极紫外(EUV)光刻中,化学是由二次电子驱动的。需要对这些过程有更深入的了解。但是,电子驱动过程固有地难以通过实验表征EUV材料,从而阻碍了目标材料的工程设计。需要一个计算框架来提供信息,以便在分子水平上进行合理的材料工程和鉴定。我们证明密度泛函理论计算可以实现此目的。我们首先证明一次电子能谱可以准确预测。其次,通过从头算分子动力学计算研究了光酸产生剂在激发或电子附着后的动力学。第三,我们证明电子附着亲和力是还原电位和清除剂量的良好预测指标。
更新日期:2020-09-11
down
wechat
bug