当前位置: X-MOL 学术Int. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interconnections between dissociative electron attachment and electron-driven biological processes
International Reviews in Physical Chemistry ( IF 6.1 ) Pub Date : 2018-01-02 , DOI: 10.1080/0144235x.2018.1461347
Stanislav A. Pshenichnyuk 1 , Alberto Modelli 2, 3 , Alexei S. Komolov 4
Affiliation  

Abstract Small molecular species present in mitochondria as, e.g. quinones and oxygen, can capture cellular electrons thus behaving as electron carriers or reactive species, supporting the fundamental process of respiration, and providing protection from pathogens. When xenobiotics penetrate living cells, their delicate redox balance can be altered by capture of cellular electrons to form temporary negative ions. The latter can give rise to the formation of reactive species via dissociative electron attachment (DEA), as observed under gas-phase or electrochemical conditions. DEA to isolated biorelevant molecules studied in vacuo with the support of in silico methods can serve as a model to predict the behaviour of these species in vivo under conditions of electron ‘leakage’ in the lipid-protein-cytosol media or in enzymatic active centres. The present review summarises the results of studies on the correlation between the biological activity of various classes of compounds and fragment species formed by DEA. The following classes of compounds are included into the present review: chlorinated organic pollutants, brominated ethers, captafol and 2,6-dichloroisonicotinic acid, atrazine and bromoxynil, non-steroidal anti-inflammatory drugs, natural polyphenolic compounds, anthralin, salicylic acid and related compounds, ascorbic acid, melatonin, tryptophan, indole and related compounds and some organic peroxides. Formation of temporary molecular anions and their decay are characterised using electron transmission spectroscopy (ETS) and DEA spectroscopy. Quantum-chemical calculations support the identification of the dissociation products. Cellular electron attachment to unnatural electron acceptors is likely to be the first step of cascade processes which constitute the molecular mechanisms of electron-driven biological processes. The fragment species detected with DEA are of importance for understanding the metabolism of xenobiotics, including side effects produced by drugs.

中文翻译:

解离电子附着与电子驱动的生物过程之间的相互联系

摘要 存在于线粒体中的小分子物质,例如醌和氧,可以捕获细胞电子,从而充当电子载体或反应性物质,支持呼吸的基本过程,并提供保护免受病原体侵害。当外源性物质渗入活细胞时,它们微妙的氧化还原平衡可以通过捕获细胞电子形成临时负离子来改变。如在气相或电化学条件下观察到的,后者可以通过解离电子附着 (DEA) 形成反应性物种。在计算机方法的支持下,在真空中研究分离的生物相关分子的 DEA 可以作为模型来预测这些物种在脂质-蛋白质-细胞溶胶介质或酶活性中心中的电子“泄漏”条件下的体内行为。本综述总结了关于各类化合物的生物活性与 DEA 形成的片段种类之间相关性的研究结果。本综述包括以下几类化合物:氯化有机污染物、溴化醚、杀虫唑和 2,6-二氯异烟酸、莠去津和溴苯腈、非甾体抗炎药、天然多酚化合物、蒽林、水杨酸和相关的化合物、抗坏血酸、褪黑激素、色氨酸、吲哚和相关化合物以及一些有机过氧化物。使用电子透射光谱 (ETS) 和 DEA 光谱表征临时分子阴离子的形成及其衰变。量子化学计算支持解离产物的鉴定。细胞电子与非自然电子受体的连接很可能是级联过程的第一步,级联过程构成了电子驱动生物过程的分子机制。用 DEA 检测到的片段种类对于了解外源性物质的代谢非常重要,包括药物产生的副作用。
更新日期:2018-01-02
down
wechat
bug