当前位置: X-MOL 学术Abh. Math. Semin. Univ. Hambg. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A counting invariant for maps into spheres and for zero loci of sections of vector bundles
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg ( IF 0.4 ) Pub Date : 2020-11-27 , DOI: 10.1007/s12188-020-00228-6
Panagiotis Konstantis

The set of unrestricted homotopy classes $[M,S^n]$ where $M$ is a closed and connected spin $(n+1)$-manifold is called the $n$-th cohomotopy group $\pi^n(M)$ of $M$. Moreover it is known that $\pi^n(M) = H^n(M;\mathbb Z) \oplus \mathbb Z_2$ by methods from homotopy theory. We will provide a geometrical description of the $\mathbb Z_2$ part in $\pi^n(M)$ analogous to Pontryagin's computation of the stable homotopy group $\pi_{n+1}(S^n)$. This $\mathbb Z_2$ number can be computed by counting embedded circles in $M$ with a certain framing of their normal bundle. This is a analogous result to the mod $2$ degree theorem for maps $M \to S^{n+1}$. Finally we will observe that the zero locus of a section in an oriented rank $n$ vector bundle $E \to M$ defines an element in $\pi^n(M)$ and it turns out that the $\mathbb Z_2$ part is an invariant of the isomorphism class of $E$. At the end we show, that if the Euler class of $E$ vanishes this $\mathbb Z_2$ invariant is the final obstruction to the existence of a nowhere vanishing section.

中文翻译:

映射到球体和向量束部分的零轨迹的计数不变量

一组无限制同伦类$[M,S^n]$,其中$M$ 是一个封闭连通的自旋$(n+1)$-流形,称为第$n$-个同伦群$\pi^n( M)$ 的 $M$。此外,通过同伦理论的方法已知 $\pi^n(M) = H^n(M;\mathbb Z) \oplus \mathbb Z_2$。我们将提供 $\pi^n(M)$ 中 $\mathbb Z_2$ 部分的几何描述,类似于 Pontryagin 对稳定同伦群 $\pi_{n+1}(S^n)$ 的计算。这个 $\mathbb Z_2$ 数字可以通过计算 $M$ 中嵌入的圆圈以及它们的正常束的特定框架来计算。这是映射 $M \to S^{n+1}$ 的模 $2$ 度定理的类似结果。最后,我们将观察到有向秩 $n$ 向量丛 $E \to M$ 中一个部分的零轨迹定义了 $\pi^n(M)$ 中的一个元素,结果证明 $\mathbb Z_2$ part 是 $E$ 同构类的不变量。最后我们证明,如果 $E$ 的欧拉类消失,这个 $\mathbb Z_2$ 不变量是无处消失部分存在的最后障碍。
更新日期:2020-11-27
down
wechat
bug