当前位置: X-MOL 学术Urban Rail. Transit › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methodology for the Characterisation of Linear Rail Transport Infrastructures with the Machine Learning Technique and Their Application in a Hyperloop Network
Urban Rail Transit Pub Date : 2021-05-20 , DOI: 10.1007/s40864-021-00149-4
José Ángel Fernández Gago , Federico Collado Pérez-Seoane

The layout solution for linear rail transport infrastructure will always alternate ‘surface’ sections with ‘tunnel’ and ‘viaduct’ sections. The capital expenditure (CapEx) linked at the planning stage to this type of public asset is strongly connected to the quantity of tunnels and viaducts planned. In this context, for similar lengths, a railway line using 15% tunnels and 7% viaducts to link two cities should not have the same financial viability as one using 8% tunnels and 3% viaducts to link the same cities. The process of planning, design and construction of linear works is heavily scrutinised by public administrations in all countries, and in many cases similar standards of work are shared. Firstly, this research paper highlights the existence of hidden geometric patterns in all linear transport infrastructures worldwide. Secondly, it proposes to exploit the existence of such patterns for the benefit of planners through the computational power available today in machine learning-as-a-service (MLaaS) platforms. This article demonstrates how geometric features extracted from any succession of rectangular trapeziums in linear infrastructures can predict the quantity of kilometres in ‘surface’, ‘tunnel’ and ‘viaduct’ sections in future linear rail transport infrastructures that have not yet been built. The practical application of the proposed working methodology has made it possible to intuit the characteristics of a future Hyperloop transport network in Europe of more than 12,000 km in length.



中文翻译:

机器学习技术表征线性铁路运输基础设施的方法论及其在超环网中的应用

线性铁路运输基础设施的布局解决方案始终将“地面”部分与“隧道”和“高架桥”部分交替出现。在规划阶段,与此类公共资产相关的资本支出(CapEx)与规划的隧道和高架桥的数量紧密相关。在这种情况下,对于相似的长度,使用15%的隧道和7%的高架桥连接两个城市的铁路线的财务可行性不应与使用8%的隧道和3%的高架桥来连接相同城市的铁路线具有相同的财务可行性。线性规划,设计和建造的过程在所有国家中都受到公共管理部门的严格审查,在许多情况下,类似的工作标准是共享的。首先,本研究论文强调了全球所有线性运输基础设施中隐藏的几何图案的存在。第二,它提议通过当今机器学习即服务(MLaaS)平台中可用的计算能力来利用这种模式的存在,以使计划者受益。本文演示了从线性基础设施中任何连续的矩形梯形中提取的几何特征如何预测未来尚未建成的线性铁路运输基础设施中“表面”,“隧道”和“高架桥”部分的公里数。拟议的工作方法的实际应用使人们有可能了解欧洲未来全长超过12,000 km的Hyperloop运输网络的特征。本文演示了从线性基础设施中任何连续的矩形梯形中提取的几何特征如何预测未来尚未建成的线性铁路运输基础设施中“表面”,“隧道”和“高架桥”部分的公里数。拟议的工作方法的实际应用使人们有可能了解欧洲未来全长超过12,000 km的Hyperloop运输网络的特征。本文演示了从线性基础设施中任何连续的矩形梯形中提取的几何特征如何预测未来尚未建成的线性铁路运输基础设施中“表面”,“隧道”和“高架桥”部分的公里数。拟议的工作方法的实际应用使人们有可能了解欧洲未来全长超过12,000 km的Hyperloop运输网络的特征。

更新日期:2021-05-20
down
wechat
bug