当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the generic family of Cayley graphs of a finite group
Journal of Combinatorial Theory Series A ( IF 1.2 ) Pub Date : 2021-06-30 , DOI: 10.1016/j.jcta.2021.105495
Czesław Bagiński 1 , Piotr Grzeszczuk 1
Affiliation  

The Cayley graphs Gm(G)=Cay(Gm,S) of Cartesian powers of the finite group G with respect to canonical symmetric subsets S=S(m)Gm are investigated. It is proved that for each m>1 the graph Gm(G) determines the group G up to isomorphism. The groups of automorphisms Aut(Gm(G)) are determined. It is shown that if G is a non-abelian group, then Aut(Gm(G))(GmAut(G))Dm+1, where Dm+1 is the dihedral group of order 2m+2. If G is an abelian group (with some exceptions for m=3), then Aut(Gm(G))Gm(Aut(G)×Sm+1), where Sm+1 is the symmetric group of degree m+1. Relations between Cayley graphs Gm(G) and Bergman-Isaacs Theorem on rings with fixed-point-free group actions are discussed.



中文翻译:

关于有限群的凯莱图的泛族

凯莱图 G(G)=C一种(G,)有限群G关于正则对称子集的笛卡尔幂=()G被调查。证明对于每个>1G(G)确定群G直至同构。自同构群自动(G(G))被确定。证明如果G是一个非阿贝尔群,则自动(G(G))(G自动(G))D+1, 在哪里 D+1 是有序的二面体群 2+2. 如果G是一个阿贝尔群(对于=3), 然后 自动(G(G))G(自动(G)×+1), 在哪里 +1 是度的对称群 +1. Cayley 图之间的关系G(G) 讨论了具有不动点自由群作用的环上的 Bergman-Isaacs 定理。

更新日期:2021-06-30
down
wechat
bug