当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coherent spin-wave transport in an antiferromagnet
Nature Physics ( IF 19.6 ) Pub Date : 2021-07-29 , DOI: 10.1038/s41567-021-01290-4
J R Hortensius 1 , D Afanasiev 1 , M Matthiesen 1 , R Leenders 2 , R Citro 3 , A V Kimel 4 , R V Mikhaylovskiy 2 , B A Ivanov 5 , A D Caviglia 1
Affiliation  

Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation1,2,3. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible4,5. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information6,7,8,9,10,11. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s–1. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.



中文翻译:

反铁磁体中的相干自旋波传输

Magnonics 是一个与自旋电子学互补的研究领域,其中自旋波(磁振子)的量子取代电子作为信息载体,有望降低耗散1,2,3。超快、纳米级磁控逻辑电路的发展需要新的工具和材料来产生频率尽可能高、波长尽可能短的相干自旋波4,5。反铁磁体可以承载太赫兹频率的自旋波,因此被视为实现最快和最少耗散信息传输的未来平台6,7,8,9,10,11. 然而,到目前为止,在反铁磁体中产生短波长相干传播磁振子仍然难以捉摸。在这里,我们报告了使用超短光脉冲在反铁磁氧化物镝正铁氧体中有效发射和检测相干传播磁振子的纳米级波包。由于大吸收导致的激光场的亚波长限制产生了强烈不均匀的自旋激发分布,从而能够传播相干太赫兹自旋波的宽带连续谱。波包包含最短探测波长为 125 nm 的磁振子,这些磁振子以超过 13 km s –1的超音速传播到材料中. 这种相干短波长自旋载流子的来源为太赫兹反铁磁磁子和太赫兹频率下的相干介导逻辑器件开辟了新的前景。

更新日期:2021-07-29
down
wechat
bug