当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility
Science ( IF 56.9 ) Pub Date : 2021-07-30 , DOI: 10.1126/science.abh3884
Nengxu Li 1, 2 , Xiuxiu Niu 1, 2 , Liang Li 2 , Hao Wang 1, 3 , Zijian Huang 2 , Yu Zhang 2 , Yihua Chen 2 , Xiao Zhang 1 , Cheng Zhu 1 , Huachao Zai 2 , Yang Bai 1 , Sai Ma 1 , Huifen Liu 2 , Xixia Liu 2 , Zhenyu Guo 2 , Guilin Liu 4 , Rundong Fan 2 , Hong Chen 5 , Jianpu Wang 5 , Yingzhuo Lun 6 , Xueyun Wang 6 , Jiawang Hong 6 , Haipeng Xie 7 , Devon S Jakob 8 , Xiaoji G Xu 8 , Qi Chen 1 , Huanping Zhou 2
Affiliation  

Solution processing of semiconductors is highly promising for the high-throughput production of cost-effective electronics and optoelectronics. Although hybrid perovskites have potential in various device applications, challenges remain in the development of high-quality materials with simultaneously improved processing reproducibility and scalability. Here, we report a liquid medium annealing (LMA) technology that creates a robust chemical environment and constant heating field to modulate crystal growth over the entire film. Our method produces films with high crystallinity, fewer defects, desired stoichiometry, and overall film homogeneity. The resulting perovskite solar cells (PSCs) yield a stabilized power output of 24.04% (certified 23.7%, 0.08 cm2) and maintain 95% of their initial power conversion efficiency (PCE) after 2000 hours of operation. In addition, the 1-cm2 PSCs exhibit a stabilized power output of 23.15% (certified PCE 22.3%) and keep 90% of their initial PCE after 1120 hours of operation, which illustrates their feasibility for scalable fabrication. LMA is less climate dependent and produces devices in-house with negligible performance variance year round. This method thus opens a new and effective avenue to improving the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.



中文翻译:

液体介质退火用于制造具有更高重现性的耐用钙钛矿太阳能电池

半导体的溶液处理对于具有成本效益的电子产品和光电子产品的高通量生产非常有前景。尽管混合钙钛矿在各种设备应用中具有潜力,但在开发同时提高加工再现性和可扩展性的高质量材料方面仍然存在挑战。在这里,我们报告了一种液体介质退火 (LMA) 技术,该技术创造了一个强大的化学环境和恒定的加热场,以调节整个薄膜的晶体生长。我们的方法生产的薄膜具有高结晶度、更少的缺陷、所需的化学计量和整体薄膜均匀性。由此产生的钙钛矿太阳能电池 (PSC) 产生 24.04% 的稳定功率输出(认证为 23.7%,0.08 cm 2) 并在运行 2000 小时后保持 95% 的初始功率转换效率 (PCE)。此外,1-cm 2 PSC 的稳定输出功率为 23.15%(经认证的 PCE 为 22.3%),并在运行 1120 小时后保持其初始 PCE 的 90%,这说明了其可扩展制造的可行性。LMA 对气候的依赖性较小,并在内部生产设备,全年性能差异可忽略不计。因此,该方法为以可扩展和可重复的方式提高钙钛矿薄膜和光伏器件的质量开辟了一条新的有效途径。

更新日期:2021-07-30
down
wechat
bug