当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical assessment of rectangular tunnels configurations using support vector machine (SVM) and gene expression programming (GEP)
Engineering with Computers ( IF 8.7 ) Pub Date : 2021-07-30 , DOI: 10.1007/s00366-021-01473-w
Jun Zhang 1 , Ruoli Shi 1 , Shaohua Shi 2 , A. K. Alzo’ubi 3 , Angel Roco-Videla 4, 5 , Mohamed. M. A. Hussein 6 , Afrasyab Khan 7
Affiliation  

Rectangular tunnel boring machine (TBM) is applied for the tunnels’ excavation including a cross section of circular and rectangular shape within the various rocks and soil strata. Excessive structural forces, which is produced within tunnel linings, might affect the serviceability and safety of tunnels whose forces acting on tunnels linings during the initial design period have to be accurately calculated. Few numerical studies have been conducted on different soil-rectangular tunnel systems to clarify the critical response characteristics of cut-and-cover (rectangular) tunnels adjusted to transversal ground shaking. In this case, predicting the soil dynamic shear stresses developed around the tunnel is an elaborate task due to the interaction of TBM in the rectangular form and the rock. Despite doing the empirical studies in analyzing the rectangular tunnels systems, using artificial intelligence (AI) methods could significantly develop the optimization of TBM tunneling and decreasing the cost, error percentages, disturbance, and time-consuming complications related to tunneling. In this study, two algorithms, namely, support vector machine (SVM) and gene expression programming (GEP), were used to accurately predict the soil dynamic shear stresses developed around the tunnel. The models were developed and measured resulting that SVM can indicate a high-performance capacity in predicting the soil dynamic shear stresses developed around the tunnel through the rectangular TBM excavation machine.



中文翻译:

使用支持向量机 (SVM) 和基因表达编程 (GEP) 对矩形隧道配置进行数值评估

矩形隧道掘进机(TBM)适用于在各种岩石和土层中挖掘圆形和矩形截面的隧道。隧道衬砌内产生的结构力过大,可能会影响隧道的使用性能和安全性,在初始设计期间必须准确计算作用在隧道衬砌上的力。很少对不同的土壤-矩形隧道系统进行数值研究,以阐明适应横向地面震动的明挖(矩形)隧道的临界响应特性。在这种情况下,由于矩形形式的 TBM 与岩石的相互作用,预测隧道周围土壤动态剪应力是一项复杂的任务。尽管在分析矩形隧道系统方面进行了实证研究,但使用人工智能 (AI) 方法可以显着开发 TBM 隧道的优化,并降低与隧道相关的成本、错误百分比、干扰和耗时的并发症。在这项研究中,两种算法,即支持向量机(SVM)和基因表达编程(GEP),被用于准确预测隧道周围产生的土壤动态剪应力。模型的开发和测量结果表明,SVM 可以在预测隧道周围通过矩形 TBM 挖掘机产生的土壤动态剪应力方面具有高性能能力。使用人工智能 (AI) 方法可以显着开发 TBM 隧道掘进的优化,并降低与隧道掘进相关的成本、错误百分比、干扰和耗时的并发症。在这项研究中,两种算法,即支持向量机(SVM)和基因表达编程(GEP),被用于准确预测隧道周围产生的土壤动态剪应力。模型的开发和测量结果表明,SVM 可以在预测隧道周围通过矩形 TBM 挖掘机产生的土壤动态剪应力方面具有高性能能力。使用人工智能 (AI) 方法可以显着开发 TBM 隧道掘进的优化,并降低与隧道掘进相关的成本、错误百分比、干扰和耗时的并发症。在这项研究中,两种算法,即支持向量机(SVM)和基因表达编程(GEP),被用于准确预测隧道周围产生的土壤动态剪应力。模型的开发和测量结果表明,SVM 可以在预测隧道周围通过矩形 TBM 挖掘机产生的土壤动态剪应力方面具有高性能能力。用于准确预测隧道周围产生的土壤动态剪应力。模型的开发和测量结果表明,SVM 可以在预测隧道周围通过矩形 TBM 挖掘机产生的土壤动态剪应力方面具有高性能能力。用于准确预测隧道周围产生的土壤动态剪应力。模型的开发和测量结果表明,SVM 可以在预测隧道周围通过矩形 TBM 挖掘机产生的土壤动态剪应力方面具有高性能能力。

更新日期:2021-07-30
down
wechat
bug