当前位置: X-MOL 学术Prog. Quant. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological tunable photonics: Emerging optoelectronic applications manipulated by living biomaterials
Progress in Quantum Electronics ( IF 11.7 ) Pub Date : 2021-09-18 , DOI: 10.1016/j.pquantelec.2021.100361
Yifan Zhang 1 , Ziyihui Wang 1, 2 , Yu-Cheng Chen 1, 3
Affiliation  

Over the past few decades, optoelectronic devices have played a key role in human life and modern technology. To meet the development trends of the industry, photonics with tunable functions have emerged as building blocks with immense potential in controlling light–matter interactions, sensors, and integrated photonics. Compared with artificially designed materials and physical approaches, stimuli-responsive biointerfaces enable a higher level of functionalities and versatile means to tailor optical responses at the nanoscale. Recent advances in biological tunable photonics have attracted tremendous attention owing to the incorporation of living biomaterials into organic photonic and photoelectric devices. In this review, we highlight the advances made in biological tunable photonics during the past five years. We begin with an overview of the competency of natural biological materials, followed by the introduction of key stimuli that have a dominant influence on the development of active biointerfaces. Lastly, we present a comprehensive summary of optoelectronic applications that utilize living biomaterials as active controls. Such applications include bioactivated light-emitting diodes, biological lasers, active plasmonics, robotics, biological logic gates, light-harvesting antennas, molecular photonic wires, bioenergy, and biophotovoltaics. The opportunities and challenges for future research directions are also briefly discussed.



中文翻译:

生物可调光子学:由活生物材料操纵的新兴光电应用

在过去的几十年里,光电设备在人类生活和现代技术中发挥了关键作用。为顺应行业发展趋势,具有可调功能的光子学已成为在控制光-物质相互作用、传感器和集成光子学方面具有巨大潜力的基石。与人工设计的材料和物理方法相比,刺激响应生物界面能够实现更高水平的功能和通用手段来定制纳米级的光学响应。由于将活的生物材料结合到有机光子和光电器件中,生物可调光子学的最新进展引起了极大的关注。在这篇综述中,我们重点介绍了过去五年生物可调谐光子学取得的进展。我们首先概述天然生物材料的能力,然后介绍对活性生物界面的发展具有主要影响的关键刺激。最后,我们对利用活生物材料作为主动控制的光电应用进行了全面总结。这些应用包括生物激活发光二极管、生物激光器、有源等离子体、机器人、生物逻辑门、光收集天线、分子光子线、生物能源和生物光伏。还简要讨论了未来研究方向的机遇和挑战。我们对利用活生物材料作为主动控制的光电应用进行了全面总结。这些应用包括生物激活发光二极管、生物激光器、有源等离子体、机器人、生物逻辑门、光收集天线、分子光子线、生物能源和生物光伏。还简要讨论了未来研究方向的机遇和挑战。我们对利用活生物材料作为主动控制的光电应用进行了全面总结。这些应用包括生物激活发光二极管、生物激光器、有源等离子体、机器人、生物逻辑门、光收集天线、分子光子线、生物能源和生物光伏。还简要讨论了未来研究方向的机遇和挑战。

更新日期:2021-11-27
down
wechat
bug