当前位置: X-MOL 学术Russ. Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Matrix isolation in laboratory astrochemistry: state-of-the-art, implications and perspective
Russian Chemical Reviews ( IF 7.7 ) Pub Date : 2021-10-06 , DOI: 10.1070/rcr4995
Vladimir I. Feldman 1 , Sergey V. Ryazantsev 1, 2, 3 , Svetlana V. Kameneva 4, 5
Affiliation  

Recent progress in observational astronomy and astrophysics has stimulated intensive laboratory studies aimed at elucidating the mechanisms of evolution of molecular matter in interstellar space and various space objects. One of the most intriguing and rapidly developing areas of these studies is the so-called “cold astrochemistry” devoted to the complex processes occurring in astrophysical ices. In this context, the matrix isolation technique (known for decades) is a very useful approach for both interpreting the results of astrophysical observations and verifying possible mechanisms of key astrochemical processes. This review outlines the most important results of recent studies using the matrix isolation technique. In fact, the results of these studies contribute to “cold” astrochemistry in two main aspects: (i) spectroscopy of astrochemically important molecules, ions and radicals stabilized in cryogenic matrices; (ii) experimental modeling of mechanisms of radiation-induced and “in dark” chemical reactions occurring in “cold” space environments (interstellar, cometary and planetary ices). In the first aspect, special attention is paid to new spectroscopic data obtained using various methods (electronic and vibrational absorption spectroscopy, electron paramagnetic resonance spectroscopy). In the second aspect, we consider the chemical effects resulting from both direct excitation of isolated molecules and the transfer of energy initially absorbed by the medium. Special attention has been paid to recent studies of spectroscopic characteristics and radiation-induced evolution of matrix-isolated weak intermolecular complexes, which can be considered “building blocks” for cold synthesis of complex molecules in the absence of diffusion mobility. In addition, we consider the use of matrix isolation for the studies of low-temperature chemical reactions “in dark” involving atoms and highly reactive intermediates, which can occur in cold space environments. In the final part, we briefly discuss the applicability of the results of matrix isolation experiments for interpretation of the mechanisms in molecular ices and highlight the prospects of this field. The review can also be useful for specialists in various aspects of chemistry and chemical physics (radiation chemistry, photochemistry, molecular spectroscopy, low-temperature chemistry).

The bibliography includes 379 references.



中文翻译:

实验室天体化学中的基质分离:最新技术、影响和观点

观测天文学和天体物理学的最新进展刺激了密集的实验室研究,旨在阐明星际空间和各种空间物体中分子物质的演化机制。这些研究中最有趣和发展最快的领域之一是所谓的“冷天体化学”,专门研究天体物理冰中发生的复杂过程。在这种情况下,矩阵分离技术(几十年来已知)是一种非常有用的方法,可用于解释天体物理观测结果和验证关键天体化学过程的可能机制。本综述概述了最近使用基质分离技术的研究的最重要结果。事实上,这些研究的结果在两个主要方面促成了“冷”天体化学:(i) 在低温基质中稳定的天体化学重要分子、离子和自由基的光谱;(ii) 在“寒冷”空间环境(星际、彗星和行星冰)中发生的辐射诱导和“黑暗中”化学反应机制的实验建模。在第一方面,特别关注使用各种方法(电子和振动吸收光谱、电子顺磁共振光谱)获得的新光谱数据。在第二个方面,我们考虑了由孤立分子的直接激发和最初被介质吸收的能量转移所产生的化学效应。最近对基质分离的弱分子间复合物的光谱特性和辐射诱导演化的研究受到了特别关注,在没有扩散流动性的情况下,它可以被认为是复杂分子冷合成的“积木”。此外,我们考虑使用基质隔离来研究“黑暗中”涉及原子和高反应性中间体的低温化学反应,这些反应可能发生在寒冷的空间环境中。在最后一部分,我们简要讨论了基质分离实验结果在解释分子冰机制方面的适用性,并强调了该领域的前景。该评论对化学和化学物理(辐射化学、光化学、分子光谱、低温化学)各个方面的专家也很有用。我们考虑使用基质隔离来研究“黑暗中”涉及原子和高反应性中间体的低温化学反应,这些反应可能发生在寒冷的空间环境中。在最后一部分,我们简要讨论了基质分离实验结果在解释分子冰机制方面的适用性,并强调了该领域的前景。该评论对化学和化学物理(辐射化学、光化学、分子光谱、低温化学)各个方面的专家也很有用。我们考虑使用基质隔离来研究“黑暗中”涉及原子和高反应性中间体的低温化学反应,这些反应可能发生在寒冷的空间环境中。在最后一部分,我们简要讨论了基质分离实验结果在解释分子冰机制方面的适用性,并强调了该领域的前景。该评论对化学和化学物理(辐射化学、光化学、分子光谱、低温化学)各个方面的专家也很有用。我们简要讨论了基质分离实验结果对解释分子冰机制的适用性,并强调了该领域的前景。该评论对化学和化学物理(辐射化学、光化学、分子光谱、低温化学)各个方面的专家也很有用。我们简要讨论了基质分离实验结果对解释分子冰机制的适用性,并强调了该领域的前景。该评论对化学和化学物理(辐射化学、光化学、分子光谱、低温化学)各个方面的专家也很有用。

参考书目包括 379 篇参考文献。

更新日期:2021-10-06
down
wechat
bug