当前位置: X-MOL 学术Soil Sci. Plant Nutr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Equivalent incorporation of Chinese milk vetch and rice straw enhanced nutrient mineralization and reduced greenhouse gas emissions
Soil Science and Plant Nutrition ( IF 2 ) Pub Date : 2022-01-25 , DOI: 10.1080/00380768.2022.2032334
Yahya Mohammed Aljerib 1, 2 , Mingjian Geng 1 , Peidong Xu 1 , Donghui Li 1 , Muhammad Shoaib Rana 1 , Qiang Zhu 1
Affiliation  

ABSTRACT

Incorporation of crop residues into the soil provides essential nutrients and increases carbon stocks, which also increases greenhouse gas emissions from the soil. The present study was conducted to determine the effect of co-incorporation of Chinese milk vetch (CMV) and rice straw (RS) at different mixing rations on the dynamics of nutrient mineralization and the emissions of CO2 and CH4. The Fluvo-aquic paddy soil was collected and mixed with crop residues at 20 g kg−1 soil and incubated for 187 days. The CMV and RS were incorporated with the ratios of 100%:0% (M100), 75%:25% (M75S25), 50%:50% (M50S50), 25%:75% (M25S75), and 0%:100% (S100), respectively. Results showed soil total nitrogen (N) concentrations were higher with the higher proportion of CMV in the mixing residues. At 8 days of incubation (DOI), both soil available phosphorus (P) and potassium (K) concentrations were greater in treatments with the higher ratio of RS, but there were no significant differences among M75S25, M50S50, M25S75, and S100 at and after 37 DOI. The CO2 emission rate of M100 was significantly higher than that of other treatments at 8 and 12 DOI. Even though the CH4 emission rate of M50S50 was significantly higher than that of other treatments at 8 DOI, S100 resulted in the significantly higher cumulative production of CH4 after 22 DOI. Predicted from the exponential regression models, S100 had the highest CO2-C and CH4-C mineralization potentials. Additionally, the M50S50 treatment resulted in 3.7%-54.7% higher microbial biomass carbon (MBC) concentration than other treatments at the end of the incubation. In summary, the mixing ratio of 1:1 was recommended for the co-incorporation of CMV and RS by considering both the nutrients availability and the greenhouse gas emissions.

更新日期:2022-01-25
down
wechat
bug