当前位置: X-MOL 学术Int. J. Low Carbon Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on the indoor thermal comfort in sports settings and an improvement to Fanger model
International Journal of Low-Carbon Technologies ( IF 2.3 ) Pub Date : 2022-03-01 , DOI: 10.1093/ijlct/ctac005
Tai Ji 1 , Jingyong Cai 2 , Kun Wang 1
Affiliation  

Abstract
Player in sports is characterized as large metabolic rate and perspiration, small thermal resistance, low coverage rate of clothing, and short breath. The heat transfer from the player to environment is generally strong. It is difficult to accurately predict the thermal comfort of the player in strenuous sports based on the traditional Fanger’s model. To overcome this limitation, an improved Fanger’s model is established on the basis of the original PMV model in this paper. Theoretical analysis of PMV based on traditional model and improved model is performed, and a series of experiments involving 798 surveys in 40 experimental sessions under various sport events are conducted. On this basis, the accuracy of traditional Fanger’s model and the improved model is compared. Results show that the improved model is more reasonable and has better agreement with the experiment results. In both simulation and experiment, the PMV predicted by the improved model is lower than that predicted by traditional Fanger’s model, which indicates that the heat dissipation calculated by the new model is higher. The improved model can predict thermal comfort of human in sports under different thermal environment with higher accuracy compared with conventional Fanger’s model. Finally, based on improved Fanger’s model, reasonable ambient temperature under different exercise intensities is recommended, which is significant to prevent occurrence of heat injury in sports and energy saving of HVAC system in gymnasium.


中文翻译:

运动场所室内热舒适度调查及Fanger模型改进

摘要
运动员在运动中的特点是代谢率和排汗量大,热阻小,衣物覆盖率低,呼吸短促。从玩家到环境的热传递通常很强。基于传统的 Fanger 模型,很难准确预测运动员在剧烈运动中的热舒适度。为了克服这一局限,本文在原有PMV模型的基础上,建立了改进的Fanger模型。基于传统模型和改进模型对PMV进行了理论分析,并在各种体育赛事下进行了涉及40个实验阶段798个调查的系列实验。在此基础上,比较了传统Fanger模型与改进模型的准确性。结果表明,改进后的模型更加合理,与实验结果吻合较好。在仿真和实验中,改进模型预测的PMV低于传统Fanger模型预测的PMV,说明新模型计算的散热量更高。与传统的Fanger模型相比,改进后的模型可以更准确地预测不同热环境下人体运动中的热舒适度。最后,基于改进的Fanger模型,推荐不同运动强度下的合理环境温度,对防止运动中热损伤的发生和体育馆暖通空调系统节能具有重要意义。改进模型预测的PMV低于传统Fanger模型预测的PMV,说明新模型计算的散热量更高。与传统的Fanger模型相比,改进后的模型可以更准确地预测不同热环境下人体运动中的热舒适度。最后,基于改进的Fanger模型,推荐不同运动强度下的合理环境温度,对防止运动中热损伤的发生和体育馆暖通空调系统节能具有重要意义。改进模型预测的PMV低于传统Fanger模型预测的PMV,说明新模型计算的散热量更高。与传统的Fanger模型相比,改进后的模型可以更准确地预测不同热环境下人体运动中的热舒适度。最后,基于改进的Fanger模型,推荐不同运动强度下的合理环境温度,对防止运动中热损伤的发生和体育馆暖通空调系统节能具有重要意义。与传统的Fanger模型相比,改进后的模型可以更准确地预测不同热环境下人体运动中的热舒适度。最后,基于改进的Fanger模型,推荐不同运动强度下的合理环境温度,对防止运动中热损伤的发生和体育馆暖通空调系统节能具有重要意义。与传统的Fanger模型相比,改进后的模型可以更准确地预测不同热环境下人体运动中的热舒适度。最后,基于改进的Fanger模型,推荐不同运动强度下的合理环境温度,对防止运动中热损伤的发生和体育馆暖通空调系统节能具有重要意义。
更新日期:2022-03-01
down
wechat
bug