当前位置: X-MOL 学术Random Matrices Theory Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Weak convergence of a collection of random functions defined by the eigenvectors of large dimensional random matrices
Random Matrices: Theory and Applications ( IF 0.9 ) Pub Date : 2022-04-23 , DOI: 10.1142/s2010326322500332
Jack W. Silverstein 1
Affiliation  

For each n, let Un be Haar distributed on the group of n×n unitary matrices. Let xn,1,,xn,m denote orthogonal nonrandom unit vectors in n and let un,k=(uk1,,ukn)=Unxn,k, k=1,,m. Define the following functions on [0,1]: Xnk,k(t)=ni=1[nt](|uki|21n), Xnk,k(t)=2ni=1[nt]ūkiuki, k<k. Then it is proven that Xnk,k,Xnk,k, Xnk,k, considered as random processes in D[0,1], converge weakly, as n, to m2 independent copies of Brownian bridge. The same result holds for the m(m+1)/2 processes in the real case, where On is real orthogonal Haar distributed and xn,in, with n in Xnk,k and 2n in Xnk,k replaced with n2 and n, respectively. This latter result will be shown to hold for the matrix of eigenvectors of Mn=(1/s)VnVnT where Vn is n×s consisting of the entries of {vij}, i,j=1,2,, i.i.d. standardized and symmetrically distributed, with each xn,i={±1/n,,±1/n} and n/sy>0 as n. This result extends the result in [J. W. Silverstein, Ann. Probab. 18 (1990) 1174–1194]. These results are applied to the detection problem in sampling random vectors mostly made of noise and detecting whether the sample includes a nonrandom vector. The matrix Bn=𝜃vnvn+Sn is studied where Sn is Hermitian or symmetric and nonnegative definite with either its matrix of eigenvectors being Haar distributed, or Sn=Mn, 𝜃>0 nonrandom and vn is a nonrandom unit vector. Results are derived on the distributional behavior of the inner product of vectors orthogonal to vn with the eigenvector associated with the largest eigenvalue of Bn.



中文翻译:

由大维随机矩阵的特征向量定义的一组随机函数的弱收敛

对于每个n,让ün是 Haar 分布在组上n×n酉矩阵。让Xn,1,,Xn,表示正交非随机单位向量n然后让n,ķ=(ķ1,,ķn)*=ün*Xn,ķ,ķ=1,,. 定义以下函数[0,1]Xnķ,ķ()=n一世=1[n](|ķ一世|2-1n),Xnķ,ķ'()=2n一世=1[n]ūķ一世ķ'一世,ķ<ķ'. 然后证明Xnķ,ķ,Xnķ,ķ',Xnķ,ķ',被认为是随机过程D[0,1], 弱收敛,如n, 至2布朗桥的独立副本。同样的结果也适用于(+1)/2真实案例中的过程,其中n是实正交 Haar 分布且Xn,一世n, 和nXnķ,ķ2nXnķ,ķ'替换为n2n, 分别。后一个结果将被证明适用于特征向量矩阵n=(1/s)nn在哪里nn×s由以下条目组成{v一世j}, 一世,j=1,2,, iid 标准化且对称分布,每个Xn,一世={±1/n,,±1/n}n/s是的>0作为n. 该结果扩展了 [JW Silverstein, Ann. 概率。 18 (1990) 1174–1194]。这些结果适用于采样主要由噪声构成的随机向量和检测样本是否包含非随机向量的检测问题。矩阵n=𝜃vnvn*+小号n在哪里研究小号n是 Hermitian 或对称非负定,其特征向量矩阵为 Haar 分布,或小号n=n,𝜃>0非随机和vn是一个非随机单位向量。结果是根据正交于向量的内积的分布行为得出的vn与最大特征值相关的特征向量n.

更新日期:2022-04-23
down
wechat
bug