当前位置: X-MOL 学术J. Micro Nanopatter. Mater. Metrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of SOI MEMS-based Bennet’s doubler kinetic energy harvester
Journal of Micro/Nanopatterning, Materials, and Metrology ( IF 2 ) Pub Date : 2020-02-20 , DOI: 10.1117/1.jmm.19.1.015001
Mithlesh Kumar 1 , G. M. A. Murali Krishna 1 , Banibrata Mukherjee 2 , Siddhartha Sen 1
Affiliation  

Abstract. Background: Design of microelectromechanical system based Bennet’s doubler kinetic energy harvester (KEH) is tricky as it has to satisfy the operating criteria of doubler circuit along with the harvester’s design constraints for its operation. Aim: Design guidelines for an electrostatic KEH using Bennet’s doubler circuit along with its experimental validation are presented. Approach: Bennet’s doubler circuit can work as a KEH only for a specific range of capacitance ratio across interdigitated electrodes of the harvester. The constraints on the resonant frequency of Bennet’s doubler harvester have been deduced to achieve operational capacitance ratio at both low and high vibrational frequencies. Finally, a test structure is fabricated, using silicon-on-insulator multiuser MEMS processes, and tested for capacitance ratio η greater than 1.366, a prerequisite for the operation of Bennet’s doubler circuit. Results: Resonant operation of the test structure achieves capacitance ratio of 1.39 with a capability of harvesting energy density of 4.63  μJ/cm3. Further, an improved harvester design is also presented for η  =  1.5, based on the discussed guidelines that increase the energy density to 19.6  μJ/cm3. Conclusions: We will present an insight into the design of Bennet’s doubler harvester for different vibrational frequencies, which is being widely explored for electrostatic energy harvesting.

中文翻译:

基于SOI MEMS的Bennet倍增动能采集器设计

摘要。背景:基于 Bennet 的倍增器动能采集器 (KEH) 的微机电系统设计非常棘手,因为它必须满足倍压器电路的操作标准以及采集器对其操作的设计限制。目的:介绍了使用 Bennet 倍增器电路的静电 KEH 的设计指南及其实验验证。方法: Bennet 的倍增器电路可以作为 KEH 工作,仅适用于采集器叉指电极之间特定范围的电容比。已经推导出了对 Bennet 倍频采集器的谐振频率的限制,以实现在低振动频率和高振动频率下的操作电容比。最后,使用绝缘体上硅多用户 MEMS 工艺制造测试结构,并测试电容比 η 大于 1。366,Bennet 的倍频电路运行的先决条件。结果:测试结构的谐振操作实现了 1.39 的电容比,能够收集 4.63 μJ/cm3 的能量密度。此外,根据讨论的将能量密度提高到 19.6 μJ/cm3 的指南,还针对 η = 1.5 提出了改进的收割机设计。结论:我们将对 Bennet 针对不同振动频率的倍增器收集器的设计进行深入了解,该设计正在被广泛用于静电能量收集。基于所讨论的将能量密度增加到 19.6 μJ/cm3 的指南。结论:我们将对 Bennet 针对不同振动频率的倍增器收集器的设计进行深入了解,该设计正在被广泛用于静电能量收集。基于所讨论的将能量密度增加到 19.6 μJ/cm3 的指南。结论:我们将对 Bennet 针对不同振动频率的倍增器收集器的设计进行深入了解,该设计正在被广泛用于静电能量收集。
更新日期:2020-02-20
down
wechat
bug