当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene-based nanocomposite using new modeling molecular dynamic simulations for proposed neutralizing mechanism and real-time sensing of COVID-19
Nanotechnology Reviews ( IF 7.4 ) Pub Date : 2022-01-01 , DOI: 10.1515/ntrev-2022-0093
Kamrun Nahar Fatema 1 , Suresh Sagadevan 2 , Ju Yong Cho 3 , Won Kweon Jang 3 , Won-Chun Oh 1
Affiliation  

Abstract A new virus, the coronavirus (COVID-19), is causing serious respiratory infections in humans. Rapid, specific, and sensitive diagnostic techniques for early-stage detection of SARS-CoV-2 viral protein are developing as a necessary response for effective smart diagnostics, treatment optimization, and exploration of therapeutics with better effectiveness in the fight against the COVID-19 pandemic. Keeping the considerations mentioned above, we propose a new modeling graphene nanocomposite-based biosensing device for detecting COVID-19 at the site of the epidemic as the best way to manage the pandemic. It is important to address the problems of COVID-19 management. With the challenges and aspects of COVID-19 management in mind, we present in this review a collective approach involving electrochemical COVID-19 biosensing required for early-stage COVID-19 diagnosis and the direct interaction with viral surface glycoproteins and metal nanoparticles that can enter cells and neutralize viruses by interacting directly with the viral genome (ribonucleic acid), which identifies the COVID-19 spike protein and antiviral procedure including virus inactivation, host cell receptor inactivation, electrostatic entrapment, and physicochemical destruction of viral species by nucleotide ring opening. The interactions between the graphene composite and virus may be boosted by functionalization of the carbon surface and decoration of metallic components that enhance these interactions. Our proposed new modeling molecular dynamic simulation-based neutralizing mechanism and real-time detection of COVID-19 on graphene nanocomposite-based biosensors are suitable for point-of-care diagnostic applications, and this sensing platform can be modified for the early diagnosis of severe viral infections using real samples. For the potential application, the suggested one is the chemical reaction and bond breaking between the metallic component and molecule of COVID19 with computer simulation data.

中文翻译:

基于石墨烯的纳米复合材料使用新的建模分子动力学模拟来提出中和机制和 COVID-19 的实时传感

摘要 一种新病毒冠状病毒 (COVID-19) 正在引起人类严重的呼吸道感染。用于早期检测 SARS-CoV-2 病毒蛋白的快速、特异性和灵敏的诊断技术正在发展为有效的智能诊断、治疗优化和探索更有效地对抗 COVID-19 的治疗方法的必要响应大流行。考虑到上述考虑,我们提出了一种新的基于石墨烯纳米复合材料的建模生物传感装置,用于在流行病现场检测 COVID-19,作为管理流行病的最佳方法。解决 COVID-19 管理问题很重要。考虑到 COVID-19 管理的挑战和方面,我们在这篇综述中提出了一种集体方法,涉及早期 COVID-19 诊断所需的电化学 COVID-19 生物传感,以及与病毒表面糖蛋白和金属纳米颗粒的直接相互作用,这些糖蛋白和金属纳米颗粒可以通过直接与病毒基因组(核糖核酸)相互作用进入细胞并中和病毒。酸),它鉴定了 COVID-19 刺突蛋白和抗病毒程序,包括病毒灭活、宿主细胞受体灭活、静电诱捕和通过核苷酸开环对病毒物种的物理化学破坏。石墨烯复合材料和病毒之间的相互作用可以通过碳表面的功能化和增强这些相互作用的金属成分的装饰来增强。我们提出的基于分子动力学模拟的新建模中和机制和基于石墨烯纳米复合材料的生物传感器上 COVID-19 的实时检测适用于即时诊断应用,并且该传感平台可以修改用于早期诊断重症使用真实样本的病毒感染。对于潜在应用,建议使用计算机模拟数据进行 COVID19 的金属成分和分子之间的化学反应和键断裂。
更新日期:2022-01-01
down
wechat
bug