当前位置: X-MOL 学术SPE Reserv. Eval. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fault Rock Property Prediction on Jurassic Clastics of the Barents Sea, Norway
SPE Reservoir Evaluation & Engineering ( IF 2.1 ) Pub Date : 2022-03-01 , DOI: 10.2118/206290-pa
V. Schuller 1 , A. Zamolyi 2 , Eirik Stueland 2 , I. Dunkl 3 , M. Kettermann 4 , Z. Schleder 2
Affiliation  

Summary We analyzed the fault rocks of a compartmentalized field in the Barents Sea, in an area with several tectonic elements, which formed at different tectonic events. Standard fault seal analysis (FSA) was conducted to predict the shale content of the fault rock (shale gouge ratio, SGR). A static cellular model based on well data, seismic data, and geological concepts served as input. The fault rock calibration workflow required various data acquired by different methods. We analyzed the Middle Triassic to Upper Jurassic clastic deposits to reconstruct the tectonic history. Apatite fission track (AFT) and (U-Th)/He thermochronology were used to determine the maximum burial depths and exhumation history. The results of high-resolution shale ductility analysis, a compaction trend study, kinematic analysis, and structural modeling (section balancing) served as additional input constraints for fault rock calibration. The interpretation of the results helped to reconstruct the following tectonic evolution. The orthogonal faults developed shortly after deposition, during Late Triassic to Early Jurassic times at relatively shallow depth, below 1000 m. Ongoing subsidence created accommodation space for Upper Jurassic to Cenozoic deposits with a maximum burial depth of 2000 m for the Middle Jurassic rocks. Exhumation of the area started around 10 Ma and continued through to Quaternary times. The predicted across-fault-flow values for fault rock permeability show a wide range when using poorly constrained input for fault rock calibration: 9.9E−15 to 9.9E−13 m² for SGR values around 0.08 at reservoir/reservoir juxtaposition. Fault rock calibration using elaborated results reduced the uncertainty of fault rock permeability estimates, and ultimately, for transmissibility multipliers (TMs). The reason for the sensitivity of the fault rock calibration is a combination of following factors: highly permeable reservoir sandstone, shallow depth of initial faulting, maximum burial depth and low shale content at the upper, main reservoir level. The study shows that an accurate reconstruction of the geohistory provides essential parameters for fault rock calibration and fault rock permeability prediction. The range of values can widely scatter if boundary conditions are not acknowledged. Well-constrained fault rock calibration reduces the uncertainty on possible flow scenarios, increases the reliability on production forecasts and helps determine the most efficient drainage strategy.

中文翻译:

挪威巴伦支海侏罗系碎屑岩断层岩性预测

总结 我们分析了巴伦支海的一个分区区域的断层岩,该区域具有多种构造元素,这些构造元素是在不同的构造事件中形成的。进行标准断层封闭分析 (FSA) 以预测断层岩的页岩含量(页岩泥比,SGR)。基于井数据、地震数据和地质概念的静态蜂窝模型作为输入。断层岩标定工作流程需要通过不同方法获取的各种数据。我们分析了中三叠统至上侏罗统碎屑沉积,以重建构造历史。磷灰石裂变径迹 (AFT) 和 (U-Th)/He 热年代学用于确定最大埋藏深度和挖掘历史。高分辨率页岩延性分析、压实趋势研究、运动学分析、和结构建模(截面平衡)作为断层岩石校准的额外输入约束。对结果的解释有助于重建以下构造演化。正交断层在沉积后不久发育,在晚三叠世至早侏罗世时期,深度相对较浅,低于 1000 m。持续的沉降为上侏罗统至新生代沉积物创造了容纳空间,中侏罗统岩石的最大埋藏深度为 2000 m。该地区的挖掘始于 10 Ma 左右,一直持续到第四纪。当使用约束不佳的输入进行断层岩校准时,断层岩渗透率的预测跨断层流值显示出很大的范围:9.9E-15 到 9.9E-13 m²,储层/储层并置时 SGR 值约为 0.08。使用详细结果进行断层岩石校准降低了断层岩石渗透率估计的不确定性,并最终降低了传输率乘数 (TM)。断层岩标定敏感的原因是以下因素的组合:高渗透储层砂岩、初始断层深度较浅、最大埋深和上部主储层页岩含量低。研究表明,准确的地质历史重建为断层岩校准和断层岩渗透率预测提供了必要的参数。如果不承认边界条件,值的范围可能会很分散。良好约束的断层岩石校准减少了可能的流动场景的不确定性,
更新日期:2022-03-01
down
wechat
bug