当前位置: X-MOL 学术J. Photonics Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonreciprocal photonic management for photovoltaic conversion: design and fundamental efficiency limits
Journal of Photonics for Energy ( IF 1.7 ) Pub Date : 2022-06-01 , DOI: 10.1117/1.jpe.12.032207
Andrei Sergeev 1 , Kimberly Sablon 2
Affiliation  

Significant progress in the development of nonreciprocal optical components with broken Kirchhoff symmetry paves the way for increasing the photovoltaic (PV) conversion efficiency beyond the Shockley–Queisser limit due to reuse of emitted photons. Recent papers have analyzed the PV converter with several or an infinite number of multijunction cells, in which the cells are coupled via nonreciprocal filters (optical diodes) in such a way that the light emitted by one cell is absorbed by another cell. We proposed and investigated a single cell converter with nonreciprocal external photon recycling, which provided reabsorption and reuse of the emitting light by the same cell. We considered properties of photons in the sunbeam in terms of ergodicity, disorder, energy availability, information entropy, and coherence, and established fundamental limitations imposed by endoreversible thermodynamics on conversion efficiency at maximal power output. Our results show that the nonreciprocal converter with an ideal multijunction cell can approach the Carnot efficiency, whereas operating exactly at the Carnot limit requires an infinite number of photon recycling processes. This requirement resolves the famous thermodynamic paradox of the optical diode because any small dissipation in the cell or optical system enhanced by infinite recycling will stabilize the converter operation below the Carnot limit. We generalized endoreversible thermodynamics to photonic distributions with nonzero chemical potential and derived the limiting efficiency of the nonreciprocal single-junction PV converter. The performance of this converter with available GaAs solar cells was evaluated.

中文翻译:

光伏转换的非互易光子管理:设计和基本效率限制

由于重复使用发射的光子,在开发具有破坏的基尔霍夫对称性的非互易光学元件方面取得了重大进展,为提高光伏 (PV) 转换效率超过 Shockley-Queisser 极限铺平了道路。最近的论文分析了具有多个或无限多个多结电池的 PV 转换器,其中电池通过单向滤波器(光学二极管)耦合,使得一个电池发出的光被另一个电池吸收。我们提出并研究了一种具有非互易外部光子循环的单电池转换器,该转换器提供了同一电池对发射光的再吸收和再利用。我们从遍历性、无序性、能量可用性、信息熵和相干性等方面考虑了阳光中光子的特性,并确定了内可逆热力学对最大功率输出下的转换效率施加的基本限制。我们的结果表明,具有理想多结电池的单向转换器可以接近卡诺效率,而精确地在卡诺极限下运行需要无限数量的光子回收过程。这一要求解决了著名的光学二极管热力学悖论,因为无限循环增强的电池或光学系统中的任何小耗散都会使转换器的运行稳定在卡诺极限以下。我们将内可逆热力学推广到具有非零化学势的光子分布,并推导出单结光伏转换器的极限效率。评估了该转换器与可用的 GaAs 太阳能电池的性能。
更新日期:2022-06-01
down
wechat
bug