当前位置: X-MOL 学术J. Mar. Eng. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles
Journal of Marine Engineering & Technology ( IF 2.6 ) Pub Date : 2022-09-13 , DOI: 10.1080/20464177.2022.2120448
G. V. Lakhekar 1 , L. M. Waghmare 2
Affiliation  

A robust self-organising fuzzy sliding mode control law steers autonomous underwater vehicles (AUVs) to track a predefined planar path at a constant speed without temporal specifications. An intelligent methodology has been adopted for path-following control to handle varying parametric uncertainties in vehicle dynamics and also conquers stringent preliminary condition constraints in several path-following control strategies illustrated in the literature. Robust controller design builds on a fusion of sliding mode control theory and fuzzy logic technique with an adaptation mechanism to tune boundary layer width and hitting gain. This novel strategy proposes two distinct tuning procedures: the first method commonly uses absolute error and their derivative as fuzzy input variables in a two-dimensional fuzzy logic rule structure. Herein, skew symmetry property is utilised in rule base structure to derive a single input fuzzy variable based on the signed distance technique, drastically reducing two-dimensional fuzzy logic rules. Since the second method provides substantial reductions in rule inferences through the use of the fuzzy rule's mirror image and the Lyapunov approach for tuning purposes, the resulting guidance control law yields fast convergence of the path-following error trajectory towards zero along with the elimination of chattering problem. Simulation results illustrate the effectiveness and robustness of the proposed control law to achieve favourable tracking performance with a high accuracy.



中文翻译:

基于鲁棒自组织模糊滑动模式的自主水下航行器路径跟踪控制

稳健的自组织模糊滑动模式控制法则引导自主水下航行器 (AUV) 以恒定速度跟踪预定义的平面路径,而无需时间规范。路径跟踪控制采用了一种智能方法来处理车辆动力学中的各种参数不确定性,并且还克服了文献中说明的几种路径跟踪控制策略中严格的初步条件约束。鲁棒控制器设计建立在滑模控制理论和模糊逻辑技术的融合之上,具有调整边界层宽度和命中增益的自适应机制。这种新颖的策略提出了两种不同的调整程序:第一种方法通常使用绝对误差及其导数作为二维模糊逻辑规则结构中的模糊输入变量。在此处,在规则库结构中利用斜对称特性,基于符号距离技术推导出单个输入模糊变量,大大减少了二维模糊逻辑规则。由于第二种方法通过使用模糊规则的镜像和 Lyapunov 方法进行调整,从而大大减少了规则推断,由此产生的制导控制律使路径跟踪误差轨迹快速收敛到零,同时消除了抖动问题。仿真结果说明了所提出的控制律的有效性和稳健性,以实现高精度的良好跟踪性能。大幅减少二维模糊逻辑规则。由于第二种方法通过使用模糊规则的镜像和 Lyapunov 方法进行调整,从而大大减少了规则推断,由此产生的制导控制律使路径跟踪误差轨迹快速收敛到零,同时消除了抖动问题。仿真结果说明了所提出的控制律的有效性和稳健性,以实现高精度的良好跟踪性能。大幅减少二维模糊逻辑规则。由于第二种方法通过使用模糊规则的镜像和 Lyapunov 方法进行调整,从而大大减少了规则推断,由此产生的制导控制律使路径跟踪误差轨迹快速收敛到零,同时消除了抖动问题。仿真结果说明了所提出的控制律的有效性和稳健性,以实现高精度的良好跟踪性能。由此产生的制导控制律使路径跟踪误差轨迹快速收敛到零,同时消除了抖动问题。仿真结果说明了所提出的控制律的有效性和稳健性,以实现高精度的良好跟踪性能。由此产生的制导控制律使路径跟踪误差轨迹快速收敛到零,同时消除了抖动问题。仿真结果说明了所提出的控制律的有效性和稳健性,以实现高精度的良好跟踪性能。

更新日期:2022-09-13
down
wechat
bug