当前位置: X-MOL 学术Int. J. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CsPbI3 lead and CsSnI3 lead-free perovskite materials for solar cell device
International Journal of Energy Research ( IF 4.6 ) Pub Date : 2022-09-13 , DOI: 10.1002/er.8742
Aliaa Gamal 1, 2 , Mansoor Alruqi 3 , Mohamed Rabia 1, 2
Affiliation  

Long-term operational photovoltaic devices might be produced utilizing perovskites made of inorganic cesium lead halide, which have excellent thermal endurance in the air. Lead perovskite reaches power conversion efficiency (PCE) reaches 23% in 2022. The limitation of α-CsPbI3 (cubic phase) that has an appropriate bandgap is its volatility with time. As a result, using HPbI3 instead of PbI2 in a single-step deposition process, exceptionally stable α-CsPbI3 may be generated in dry air. Most notably, using CsPbI3 as an interfacial layer on perovskite after 3000 h of dry air storage, non-capsulated devices maintain approximately 90% of their initial PCE. Although much work has gone into improving the stability and then efficiency of perovskite solar cells (PSCs) controlling the interfacial charge transfer in PSCs with interface engineering can assist achieve high efficiency and stability. α-CsPbI3 quantum dots (QDs) can increase the PSCs properties by functioning as a bridge over the hole transport material and in contact with the perovskite film layer. By depositing inorganic CsPbI3 QDs with excellent moisture stability onto the perovskite layer and the interface engineering layer, the PCE increased from 15.17% to 23% in 2018 and 2022, respectively. The toxicity of lead, on the other hand, makes a huge challenge for the spreading of lead PSCs in a wide application. As a result, researchers are looking toward replacing Pb with equivalent metals based on first-principles predictions with sufficient band gap, optical, and electrical properties. CsSnI3 represents replaceable materials with good dispersion and high uniform formation. Using Sn-based PSCs have PCE values of 14.81% in 2022, but using CsSnI3 as an interfacial layer in the PSCs, the efficiency reaches 20%. The other halide Cl, Br, and F can be partially inserted in this molecule or replace I anion, this led to a variety of product results for the prepared PSC, but this efficiency is less than using only I ions. After a big study, CsSnI3 is a promising interfacial for the PSC with a lifetime of >1000 h. Now, scientists and searchers use all possibilities for increasing the device efficiency to be applicable in the industrial field. This is carried out by controlling the size of CsSnI3 particles that are used as an interfacial layer, at the other hand, controlling the size will be promising for reaching the desired efficiency and stability for the PSCs device.

中文翻译:

太阳能电池器件用CsPbI3铅和CsSnI3无铅钙钛矿材料

可以使用由无机铯铅卤化物制成的钙钛矿来生产长期运行的光伏设备,这种材料在空气中具有出色的耐热性。铅钙钛矿的功率转换效率(PCE)在2022年达到23%。具有适当带隙的α-CsPbI 3 (立方相)的局限性在于其随时间的波动性。因此,在单步沉积过程中使用 HPbI 3代替PbI 2 ,可以在干燥空气中生成异常稳定的 α-CsPbI 3 。最值得注意的是,使用 CsPbI 3作为钙钛矿上的界面层,经过 3000 小时的干燥空气储存后,非封装器件保持其初始 PCE 的大约 90%。尽管在提高钙钛矿太阳能电池 (PSC) 的稳定性和效率方面做了大量工作,但通过界面工程控制 PSC 中的界面电荷转移有助于实现高效率和稳定性。α-CsPbI 3量子点 (QD) 可以通过充当空穴传输材料上的桥梁并与钙钛矿薄膜层接触来提高 PSC 的性能。通过沉积无机 CsPbI 3钙钛矿层和界面工程层上具有优异水分稳定性的量子点,PCE在2018年和2022年分别从15.17%提高到23%。另一方面,铅的毒性对铅PSCs的广泛应用提出了巨大挑战。因此,根据第一性原理预测,研究人员正在寻求用具有足够带隙、光学和电学特性的等效金属替代 Pb。CsSnI 3代表具有良好分散性和高均匀性的可替代材料。使用 Sn 基 PSC 到 2022 年的 PCE 值为 14.81%,但使用 CsSnI 3作为 PSC 中的界面层,效率达到 20%。其他卤化物 Cl -、Br -和 F -可以部分插入该分子或替换 I -阴离子,这导致制备的 PSC 的产品结果多种多样,但这种效率低于仅使用 I -离子。经过大量研究,CsSnI 3是一种很有前途的 PSC 界面,寿命 >1000 小时。现在,科学家和研究人员利用一切可能提高设备效率以应用于工业领域。这是通过控制用作界面层的 CsSnI 3颗粒的尺寸来实现的,另一方面,控制尺寸将有望实现 PSC 器件所需的效率和稳定性。
更新日期:2022-09-13
down
wechat
bug