当前位置: X-MOL 学术Biointerphases › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids
Biointerphases ( IF 2.1 ) Pub Date : 2022-11-07 , DOI: 10.1116/6.0002034
Mojtaba Farahani 1 , James Carthew 1 , Sanchyan Bhowmik 1 , Chloe Shard 2 , Ana Nunez-Nescolarde 3 , Guillermo A Gomez 2 , Victor J Cadarso 4 , Alexander N Combes 3 , Jessica E Frith 1
Affiliation  

The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.

中文翻译:

控制工程 3D 组织和类器官中干细胞命运和模式化的新兴生物材料和技术

能够创建复杂的三维细胞模型,能够有效地在体外复制人体器官和组织的结构和功能有可能彻底改变医学。这样的模型可以促进对支撑基础发现科学的发育和疾病过程的审问,极大地加速药物开发和筛选,甚至可以用来制造植入体内的组织。然而,实现这种潜力需要重建 3D 组织的复杂生化、生物物理和细胞模式,这仍然是该领域的一个关键挑战。最近的进展受到组织形态发生和结构知识的改进以及生物工程和材料科学技术发展的推动,这些技术发展可以创建产生复杂组织微环境所需的多维和动态系统。在这篇文章中,我们讨论了体外挑战组织和器官模型,并总结了旨在应对这些挑战的生物材料和生物工程系统的最新技术水平。这包括自上而下的技术,例如 3D 光图案化、磁力、声学力和细胞折纸,以及使用 3D 生物打印、微流体、细胞片技术或复合支架的自下而上的图案化。我们通过专注于骨-肌腱界面、肾类器官和脑癌模型的具体示例,说明了这些可以应用于满足不同组织和应用需求的不同方式。最后,我们讨论了应用材料科学和生物工程开发用于体外研究的高质量 3D 组织结构的挑战和未来前景。
更新日期:2022-11-07
down
wechat
bug