当前位置: X-MOL 学术Vis. Comput. Ind. Biomed. Art › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization design of two-stage amplification micro-drive system without additional motion based on particle swarm optimization algorithm
Visual Computing for Industry, Biomedicine, and Art Pub Date : 2022-11-25 , DOI: 10.1186/s42492-022-00124-1
Manzhi Yang 1 , Kaiyang Wei 1 , Chuanwei Zhang 1 , Dandan Liu 2 , Yizhi Yang 3 , Feiyan Han 1 , Shuanfeng Zhao 1
Affiliation  

With the increasing requirements of precision mechanical systems in electronic packaging, ultra-precision machining, biomedicine and other high-tech fields, it is necessary to study a precision two-stage amplification micro-drive system that can safely provide high precision and a large amplification ratio. In view of the disadvantages of the current two-stage amplification and micro-drive system, such as poor security, low motion accuracy and limited amplification ratio, an optimization design of a precise symmetrical two-stage amplification micro-drive system was completed in this study, and its related performance was studied. Based on the guiding principle of the flexure hinge, a two-stage amplification micro-drive mechanism with no parasitic motion or non-motion direction force was designed. In addition, the structure optimization design of the mechanism was completed using the particle swarm optimization algorithm, which increased the amplification ratio of the mechanism from 5 to 18 times. A precise symmetrical two-stage amplification system was designed using a piezoelectric ceramic actuator and two-stage amplification micro-drive mechanism as the micro-driver and actuator, respectively. The driving, strength, and motion performances of the system were subsequently studied. The results showed that the driving linearity of the system was high, the strength satisfied the design requirements, the motion amplification ratio was high and the motion accuracy was high (relative error was 5.31%). The research in this study can promote the optimization of micro-drive systems.

中文翻译:

基于粒子群优化算法的无附加运动两级放大微驱动系统优化设计

随着电子封装、超精密加工、生物医药等高科技领域对精密机械系统要求的不断提高,有必要研究一种能够安全提供高精度和大放大倍数的精密二级放大微驱动系统。比率。针对目前两级放大微驱动系统安全性差、运动精度低、放大比有限等缺点,本文完成了精密对称两级放大微驱动系统的优化设计。研究,并对其相关性能进行了研究。基于柔性铰链的导向原理,设计了一种无寄生运动或无运动方向力的两级放大微驱动机构。此外,采用粒子群优化算法完成机构结构优化设计,使机构放大倍数从5倍提高到18倍。采用压电陶瓷驱动器和两级放大微驱动机构分别作为微驱动器和驱动器,设计了一种精密对称的两级放大系统。随后研究了该系统的驱动、强度和运动性能。结果表明,该系统驱动线性度高,强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。将机构的放大倍数从5倍提高到18倍。采用压电陶瓷驱动器和两级放大微驱动机构分别作为微驱动器和驱动器,设计了一种精密对称的两级放大系统。随后研究了该系统的驱动、强度和运动性能。结果表明,该系统驱动线性度高,强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。将机构的放大倍数从5倍提高到18倍。采用压电陶瓷驱动器和两级放大微驱动机构分别作为微驱动器和驱动器,设计了一种精密对称的两级放大系统。随后研究了该系统的驱动、强度和运动性能。结果表明,该系统驱动线性度高,强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。采用压电陶瓷驱动器和两级放大微驱动机构分别作为微驱动器和驱动器,设计了一种精密对称的两级放大系统。随后研究了该系统的驱动、强度和运动性能。结果表明,该系统驱动线性度高,强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。采用压电陶瓷驱动器和两级放大微驱动机构分别作为微驱动器和驱动器,设计了一种精密对称的两级放大系统。随后研究了该系统的驱动、强度和运动性能。结果表明,该系统驱动线性度高,强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。强度满足设计要求,运动放大率高,运动精度高(相对误差为5.31%)。本研究的研究可以促进微驱动系统的优化。
更新日期:2022-11-26
down
wechat
bug