当前位置: X-MOL 学术J. Geophys. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The rock fragmentation and crack propagation under TBM tunneling based on particle flow code
Journal of Geophysics and Engineering ( IF 1.4 ) Pub Date : 2022-12-09 , DOI: 10.1093/jge/gxac088
Donghao Lan 1, 2, 3 , Hongjian Deng 4 , Yanan Gao 1, 2, 3 , Yunlong Wang 2, 3 , Guangkai Zhang 2, 3
Affiliation  

The rock fragmentation and crack propagation of anisotropic rock induced by tunnel boring machine (TBM) tunneling is studied in this paper. First, a numerical model based on the 2D particle flow code (PFC2D) is established and calibrated to reveal the four stages of rock fragmentation. In Stage I (indentation depth 0–0.4 mm), the indentation force beneath the cutterhead increases and decreases dramatically with the accumulation and release of mechanical energy. Such a phenomenon indicates that a hydrostatic core (crushed zone) can be observed. In Stage II (indentation depth 0.4–1.1 mm), many median cracks propagate dramatically with the indentation force. Meanwhile, the hydrostatic core is pushed because the mechanical energy of the cutterhead is reaccumulated in the specimen. In Stage III (indentation depth 1.1–2.6 mm), lateral cracks begin to develop due to the further increase in indentation depth. In Stage IV (indentation depth 2.6–5 mm), the lateral cracks and median cracks continue to propagate, and rock chips can be found on the sides of the cutterhead. Then, with increasing confining pressure, lateral cracks begin to gradually develop and the maximum angle of lateral cracks is 70.5°. Furthermore, the magnitude of the intrusion velocity can seriously influence the evolution of the indentation force during Stages III and IV because of the accumulation and release of mechanical energy. The accumulation and release of mechanical energy are more obvious with a higher intrusion velocity of the cutterhead.

中文翻译:

基于粒子流代码的TBM掘进岩石破碎与裂纹扩展研究

本文研究了隧道掘进机(TBM)掘进引起的各向异性岩石的岩石破碎和裂纹扩展。首先,建立并标定了基于二维粒子流代码 (PFC2D) 的数值模型,以揭示岩石破碎的四个阶段。在第一阶段(压痕深度0-0.4 mm),刀盘下方的压痕力随着机械能的积累和释放而急剧增加和减少。这种现象表明可以观察到静水核心(压碎区)。在第二阶段(压痕深度 0.4–1.1 mm),许多中间裂纹随着压痕力急剧扩展。同时,由于刀盘的机械能在试件中重新积累,静压芯被推动。在第三阶段(压痕深度 1.1–2.6 mm),随着压痕深度的进一步增加,横向裂纹开始发展。第四阶段(压痕深度2.6~5 mm),横向裂纹和正中裂纹继续扩展,刀盘两侧可见岩屑。然后,随着围压的增加,横向裂缝开始逐渐发展,横向裂缝的最大角度为70.5°。此外,由于机械能的积累和释放,侵入速度的大小会严重影响阶段 III 和 IV 期间压痕力的演变。刀盘的侵入速度越高,机械能的积累和释放越明显。在刀盘的侧面可以找到碎石。然后,随着围压的增加,横向裂缝开始逐渐发展,横向裂缝的最大角度为70.5°。此外,由于机械能的积累和释放,侵入速度的大小会严重影响阶段 III 和 IV 期间压痕力的演变。刀盘的侵入速度越高,机械能的积累和释放越明显。在刀盘的侧面可以找到碎石。然后,随着围压的增加,横向裂缝开始逐渐发展,横向裂缝的最大角度为70.5°。此外,由于机械能的积累和释放,侵入速度的大小会严重影响阶段 III 和 IV 期间压痕力的演变。刀盘的侵入速度越高,机械能的积累和释放越明显。由于机械能的积累和释放,侵入速度的大小会严重影响阶段 III 和 IV 期间压痕力的演变。刀盘的侵入速度越高,机械能的积累和释放越明显。由于机械能的积累和释放,侵入速度的大小会严重影响阶段 III 和 IV 期间压痕力的演变。刀盘的侵入速度越高,机械能的积累和释放越明显。
更新日期:2022-12-09
down
wechat
bug