当前位置: X-MOL 学术Geosci. Instrum. Method. Data Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
Geoscientific Instrumentation, Methods and Data Systems ( IF 1.500 ) Pub Date : 2023-01-30 , DOI: 10.5194/gi-12-45-2023
Bartosz M. Zawilski , Franck Granouillac , Nicole Claverie , Baptiste Lemaire , Aurore Brut , Tiphaine Tallec

Soil water content (SWC) sensors are widely used for scientific studies or for the management of agricultural practices. The most common sensing techniques provide an estimate of volumetric soil water content based on sensing of dielectric permittivity. These techniques include frequency domain reflectometry (FDR), time domain reflectometry (TDR), capacitance and even remote-sensing techniques such as ground-penetrating radar (GPR) and microwave-based techniques. Here, we will focus on frequency domain reflectometry (FDR) sensors and more specifically on the questioning of their factory calibration, which does not take into account soil-specific features and therefore possibly leads to inconsistent SWC estimates. We conducted the present study in the southwest of France on two plots that are part of the ICOS ERIC network (Integrated Carbon Observation System, European Research and Infrastructure Consortium), FR-Lam and FR-Aur. We propose a simple protocol for soil-specific calibration, particularly suitable for clayey soil, to improve the accuracy of SWC determination when using commercial FDR sensors. We compared the sensing accuracy after soil-specific calibration versus factory calibration. Our results stress the necessity of performing a thorough soil-specific calibration for very clayey soils. Hence, locally, we found that factory calibration results in a strong overestimation of the actual soil water content. Indeed, we report relative errors as large as +115 % with a factory-calibrated sensor based on the real part of dielectric permittivity and up to + 245 % with a factory-calibrated sensor based on the modulus of dielectric permittivity.

中文翻译:

使用基于介电常数的传感器计算土壤含水量——土壤特定校准的好处

土壤含水量 (SWC) 传感器广泛用于科学研究或农业实践管理。最常见的传感技术基于介电常数的传感来估计体积土壤含水量。这些技术包括频域反射计 (FDR)、时域反射计 (TDR)、电容甚至遥感技术,例如探地雷达 (GPR) 和基于微波的技术。在这里,我们将重点关注频域反射计 (FDR) 传感器,更具体地说是对其工厂校准的质疑,这些校准没有考虑土壤特定的特征,因此可能导致 SWC 估计不一致。我们在法国西南部的两个地块上进行了本研究,这两个地块是 ICOS ERIC 网络(综合碳观测系统,欧洲研究和基础设施联盟)FR-Lam 和 FR-Aur 的一部分。我们提出了一个简单的土壤特定校准协议,特别适用于粘土,以提高使用商业 FDR 传感器时 SWC 测定的准确性。我们比较了土壤特定校准与工厂校准后的传感精度。我们的结果强调了对非常粘性的土壤进行彻底的土壤特定校准的必要性。因此,在当地,我们发现工厂校准导致对实际土壤含水量的严重高估。事实上,我们报告的相对误差大到 我们提出了一个简单的土壤特定校准协议,特别适用于粘土,以提高使用商业 FDR 传感器时 SWC 测定的准确性。我们比较了土壤特定校准与工厂校准后的传感精度。我们的结果强调了对非常粘性的土壤进行彻底的土壤特定校准的必要性。因此,在当地,我们发现工厂校准导致对实际土壤含水量的严重高估。事实上,我们报告的相对误差大到 我们提出了一个简单的土壤特定校准协议,特别适用于粘土,以提高使用商业 FDR 传感器时 SWC 测定的准确性。我们比较了土壤特定校准与工厂校准后的传感精度。我们的结果强调了对非常粘性的土壤进行彻底的土壤特定校准的必要性。因此,在当地,我们发现工厂校准导致对实际土壤含水量的严重高估。事实上,我们报告的相对误差大到 我们的结果强调了对非常粘性的土壤进行彻底的土壤特定校准的必要性。因此,在当地,我们发现工厂校准导致对实际土壤含水量的严重高估。事实上,我们报告的相对误差大到 我们的结果强调了对非常粘性的土壤进行彻底的土壤特定校准的必要性。因此,在当地,我们发现工厂校准导致对实际土壤含水量的严重高估。事实上,我们报告的相对误差大到+ 115 % 使用基于介电常数实部的 工厂校准传感器,使用基于介电常数模量的工厂校准传感器高达+ 245 %。
更新日期:2023-01-30
down
wechat
bug