当前位置: X-MOL 学术Geobiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Astronomically controlled deep-sea life in the Late Cretaceous reconstructed from ultra-high-resolution inoceramid shell archives
Geobiology ( IF 3.7 ) Pub Date : 2023-02-09 , DOI: 10.1111/gbi.12548
Adam Wierzbicki 1 , Erik Wolfgring 2, 3 , Michael Wagreich 3 , Mariusz Kędzierski 1 , Regina Mertz-Kraus 4
Affiliation  

The periodicity of the mutual position of celestial bodies in the Earth-Moon-Sun system is crucial to the functioning of life on Earth. Biological rhythms affect most of the processes inside organisms, and some can be recorded in skeletal remains, allowing one to reconstruct the cycles that occur in nature deep in time. In the present study, we have used ultra-high-resolution elemental ratio scans of Mg/Ca, Sr/Ca and Mn/Ca from the fossil, ca. 70 Ma old inoceramid bivalve Inoceramus (Platyceramus) salisburgensis from deep aphotic water and identified a clear regularity of repetition of the geochemical signal every of ~0.006 mm. We estimate that the shell accretion rate is on average ~0.4 cm of shell thickness per lunar year. Visible light–dark lamination, interpreted as a seasonal signal corresponding to the semilunar-related cycle, gives a rough shell age estimate and growth rate for this large bivalve species supported by a dual feeding strategy. We recognize a biological clock that follows either a semilunar (model A) or a tidal (model B) cycle. This cycle of tidal dominance seems to fit better considering the biological behaviour of I. (P.) salisburgensis, including the estimated age and growth rate of the studied specimens. We interpret that the major control in such deep-sea environment, well below the photic zone and storm wave base, was due to barotropic tidal forces, thus changing the water pressure.

中文翻译:

根据超高分辨率陶瓷酰胺贝壳档案重建白垩纪晚期受天文控制的深海生命

地球-月球-太阳系统中天体相互位置的周期性对于地球上生命的运作至关重要。生物节律影响生物体内部的大部分过程,其中一些可以在骨骼遗骸中记录下来,从而使人们能够重建自然界中发生在时间深处的循环。在本研究中,我们使用了来自化石的 Mg/Ca、Sr/Ca 和 Mn/Ca 的超高分辨率元素比扫描,约 70 Ma 老 Inoceramus 双壳类Inoceramus ( Platyceramus ) salisburgensis来自深无光水中,并确定了地球化学信号每约 0.006 毫米重复的明显规律。我们估计,贝壳吸积率平均为每农历年约 0.4 厘米的贝壳厚度。可见光-暗分层被解释为与半月相关周期相对应的季节性信号,给出了这种由双重喂养策略支持的大型双壳类物种的粗略壳龄估计和生长率。我们认识到生物钟遵循半月(模型 A)或潮汐(模型 B)周期。考虑到I的生物行为,这种潮汐优势循环似乎更适合。( P .)萨尔斯堡,包括所研究标本的估计年龄和生长速度。我们解释说,这种深海环境(远低于透光带和风暴波基底)的主要控制因素是正压潮汐力,从而改变了水压。
更新日期:2023-02-09
down
wechat
bug