当前位置: X-MOL 学术Nano. Commun. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A nano-scale n-bit ripple carry adder using an optimized XOR gate and quantum-dots technology with diminished cells and power dissipation
Nano Communication Networks ( IF 2.9 ) Pub Date : 2023-02-24 , DOI: 10.1016/j.nancom.2023.100442
Seyed-Sajad Ahmadpour , Nima Jafari Navimipour , Mohammad Mosleh , Ali Newaz Bahar , Senay Yalcin

In the nano-scale era, quantum-dot cellular automata (QCA) technology has become an appealing substitute for transistor-based technologies. QCA will be the preferred technology for developing the next generation of digital systems. On the other hand, the full-adder and ripple carry adder (RCA) are the crucial building blocks of complex circuits, the most used structures in digital operations systems, and a practical part of the most well-known complex circuits in QCA technology. In addition, this technology was used to design the full adder for several procedures, like multiplication, subtraction, and division. For this reason, the full adder is generally investigated as a central unit and microprocessor in developing QCA technology. Furthermore, most previous QCA-based adder structures have suffered from some drawbacks, such as a high number of cells, high energy consumption, the high number of gates, and the placement of inputs and outputs in a closed loop; hence, the implementation of an efficient adder with only one gate and a low number of cells, such as exclusive-OR (XOR) gate, can solve all previous problems. Therefore, in this paper, a significantly improved structure of 3-input XOR is suggested based on the promising QCA technology. In addition, a QCA clocking mechanism and explicit cell interaction form the foundation of the proposed QCA-based XOR gate configuration. This gate can be easily converted into an adder circuit while containing a small number of cells and being extremely compressed. The suggested QCA-based XOR design is focused on optimizing a single-bit adder using cellular interaction. The suggested single-bit adder contains 14 cells. Based on this adder, several different RCAs, such as 4, 8, 16, and 32-bit, are designed. The comparison of the proposed single-bit adder to the best coplanar and multi-layer ones shows a 51.72% and 36.36% reduction of cells, respectively. In addition, all suggested designs are verified through simulation using QCADesigner and QCAPro. Finally, many physical validations are provided to approve the functionality of the suggested XOR design.



中文翻译:

使用优化的 XOR 门和量子点技术的纳米级 n 位纹波进位加法器,减少了单元和功耗

在纳米级时代,量子点元胞自动机 (QCA) 技术已成为基于晶体管的技术的有吸引力的替代品。QCA 将是开发下一代数字系统的首选技术。另一方面,全加器和纹波进位加法器 (RCA) 是复杂电路的关键组成部分,是数字操作系统中最常用的结构,也是 QCA 技术中最著名的复杂电路的实用部分。此外,该技术还用于为多个程序(如乘法、减法和除法)设计全加器。因此,在开发 QCA 技术时,全加器通常作为中央单元和微处理器进行研究。此外,大多数以前的基于 QCA 的加法器结构都有一些缺点,例如大量的单元、高能量消耗、大量的门,以及输入和输出在闭环中的放置;因此,只有一个门和少量单元的高效加法器的实现,例如异或(XOR)门,可以解决所有以前的问题。因此,在本文中,基于有前途的 QCA 技术,提出了一种显着改进的 3 输入 XOR 结构。此外,QCA 时钟机制和显式单元交互构成了所提出的基于 QCA 的 XOR 门配置的基础。这个门可以很容易地转换成一个加法器电路,同时包含少量的单元并且被极度压缩。建议的基于 QCA 的 XOR 设计侧重于使用单元格交互优化单位加法器。建议的单位加法器包含 14 个单元。基于该加法器,设计了4位、8位、16位、32位等几种不同的RCA。所提出的单位加法器与最佳共面和多层加法器的比较显示,单元分别减少了 51.72% 和 36.36%。此外,所有建议的设计都使用 QCADesigner 和 QCAPro 通过仿真进行了验证。最后,提供了许多物理验证来批准建议的 XOR 设计的功能。

更新日期:2023-02-24
down
wechat
bug