当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Augmentations and immersed Lagrangian fillings
Journal of Topology ( IF 1.1 ) Pub Date : 2023-02-28 , DOI: 10.1112/topo.12280
Yu Pan 1 , Dan Rutherford 2
Affiliation  

For a Legendrian link ◂⊂▸ΛJ1M$\Lambda \subset J^1M$ with M=R$M = \mathbb {R}$ or S1$S^1$, immersed exact Lagrangian fillings LSymp◂≅▸(J1M)T◂()▸(R>0×M)$L \subset \mbox{Symp}(J^1M) \cong T^*(\mathbb {R}_{>0} \times M)$ of Λ$\Lambda$ can be lifted to conical Legendrian fillings ◂⊂▸ΣJ1◂()▸(R>0×M)$\Sigma \subset J^1(\mathbb {R}_{>0} \times M)$ of Λ$\Lambda$. When Σ$\Sigma$ is embedded, using the version of functoriality for Legendrian contact homology (LCH) from Pan and Rutherford [J. Symplectic Geom. 19 (2021), no. 3, 635–722], for each augmentation α:◂→▸A(Σ)Z/2$\alpha : \mathcal {A}(\Sigma ) \rightarrow \mathbb {Z}/2$ of the LCH algebra of Σ$\Sigma$, there is an induced augmentation ◂◽.▸ε(Σ,α):◂→▸A(Λ)Z/2$\epsilon _{(\Sigma ,\alpha )}: \mathcal {A}(\Lambda ) \rightarrow \mathbb {Z}/2$. With Σ$\Sigma$ fixed, the set of homotopy classes of all such induced augmentations, ◂⊂⋯▸IΣAug(Λ)/$I_\Sigma \subset \mathit {Aug}(\Lambda )/{\sim }$, is a Legendrian isotopy invariant of Σ$\Sigma$. We establish methods to compute IΣ$I_\Sigma$ based on the correspondence between MCFs and augmentations. This includes developing a functoriality for the cellular differential graded algebra from Rutherford and Sullivan [Adv. Math. 374 (2020), 107348, 71 pp.] with respect to Legendrian cobordisms, and proving its equivalence to the functoriality for LCH. For arbitrary n1$n \geqslant 1$, we give examples of Legendrian torus knots with 2n$2n$ distinct conical Legendrian fillings distinguished by their induced augmentation sets. We prove that when ρ1$\rho \ne 1$ and ◂⊂▸ΛJ1R$\Lambda \subset J^1\mathbb {R}$, every ρ$\rho$-graded augmentation of Λ$\Lambda$ can be induced in this manner by an immersed Lagrangian filling. Alternatively, this is viewed as a computation of cobordism classes for an appropriate notion of ρ$\rho$-graded augmented Legendrian cobordism.

中文翻译:

增强和沉浸式拉格朗日填充

对于 Legendrian 链接◂⊂▸Λ1个$\Lambda\子集 J^1M$=R$M = \mathbb {R}$或者小号1个$S^1$, 浸入精确的拉格朗日填充大号症状◂≅▸(1个)◂()▸(R>0×)$L \subset \mbox{Symp}(J^1M) \cong T^*(\mathbb {R}_{>0} \times M)$Λ$\Lambda$可以提升到圆锥形 Legendrian 馅料◂⊂▸Σ1个◂()▸(R>0×)$\Sigma \subset J^1(\mathbb {R}_{>0} \times M)$Λ$\Lambda$. 什么时候Σ$\西格玛$是嵌入的,使用来自 Pan 和 Rutherford [J. 辛几何。19(2021),没有。3, 635–722], 每次增强α:◂→▸A(Σ)Z/2个$\alpha : \mathcal {A}(\Sigma) \rightarrow \mathbb {Z}/2$LCH代数的Σ$\西格玛$, 存在诱导增强◂◽.▸ε(Σ,α):◂→▸A(Λ)Z/2个$\epsilon _{(\Sigma ,\alpha )}: \mathcal {A}(\Lambda ) \rightarrow \mathbb {Z}/2$. 和Σ$\西格玛$固定的,所有此类诱导增强的同伦类集合,◂⊂⋯▸Σ八月(Λ)/~$I_\Sigma \subset \mathit {Aug}(\Lambda )/{\sim }$, 是勒让德同位素不变量Σ$\西格玛$. 我们建立计算方法Σ$I_\西格玛$基于 MCF 和增强之间的对应关系。这包括从 Rutherford 和 Sullivan [Adv. 数学。374 (2020), 107348, 71 pp.] 关于 Legendrian 共线,并证明其等价于 LCH 的函子性。对于任意n1个$n \geqslant 1$,我们给出了 Legendrian 圆环结的例子2个n$2n$独特的圆锥形 Legendrian 填充物以其诱发的增强集而著称。我们证明当ρ1个$\rho\ne 1$◂⊂▸Λ1个R$\Lambda\subset J^1\mathbb{R}$,每个 ρ$\rho$- 分级增强Λ$\Lambda$可以通过浸入式拉格朗日填充以这种方式诱导。或者,这被视为对适当概念的并列类的计算ρ$\rho$- 分级增强 Legendrian cobordism。
更新日期:2023-03-02
down
wechat
bug