当前位置: X-MOL 学术Radiat. Environ. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Space radiation quality factor for Galactic Cosmic Rays and typical space mission scenarios using a microdosimetric approach
Radiation and Environmental Biophysics ( IF 1.7 ) Pub Date : 2023-04-16 , DOI: 10.1007/s00411-023-01023-6
Alexis Papadopoulos 1 , Ioanna Kyriakou 1 , Sébastien Incerti 2 , Giovanni Santin 3 , Petteri Nieminen 3 , Ioannis A Daglis 4, 5 , Weibo Li 6, 7 , Dimitris Emfietzoglou 1
Affiliation  

Space radiation exposure from omnipresent Galactic Cosmic Rays (GCRs) in interplanetary space poses a serious carcinogenic risk to astronauts due to the—limited or absent—protective effect of the Earth’s magnetosphere and, in particular, the terrestrial atmosphere. The radiation risk is directly influenced by the quality of the radiation, i.e., its pattern of energy deposition at the micron/DNA scale. For stochastic biological effects, radiation quality is described by the quality factor, \(Q\), which can be defined as a function of Linear Energy Transfer (LET) or the microdosimetric lineal energy (\(y\)). In the present work, the average \(Q\) of GCR for different mission scenarios was calculated using a modified version of the microdosimetric Theory of Dual Radiation Action (TDRA). NASA’s OLTARIS platform was utilized to generate the radiation environment behind different aluminum shielding (0–30 g/cm2) for a typical mission scenario in low-earth orbit (LEO) and in deep space. The microdosimetric lineal energy spectra of ions (\(Z\ge 1\)) in 1 μm liquid water spheres were calculated by a generalized analytical model which considers energy-loss fluctuations and δ-ray transport inside the irradiated medium. The present TDRA-based \(Q\)-values for the LEO and deep space missions were found to differ by up to 10% and 14% from the corresponding ICRP-based \(Q\)-values and up to 3% and 6% from NASA’s \(Q\)-model. In addition, they were found to be in good agreement with the \(Q\)-values measured in the International Space Station (ISS) and by the Mars Science Laboratory (MSL) Radiation Assessment Detector (RAD) which represent, respectively, a LEO and deep space orbit.



中文翻译:

银河宇宙射线的空间辐射质量因子和使用微剂量法的典型空间任务场景

由于地球磁层(尤其是地球大气层)的保护作用有限或不存在,行星际空间中无所不在的银河宇宙射线 (GCR) 的空间辐射暴露对宇航员构成严重的致癌风险。辐射风险直接受到辐射质量的影响,即它在微米/DNA 尺度上的能量沉积模式。对于随机生物效应,辐射质量由品质因数\(Q\)描述,它可以定义为线性能量转移 (LET) 或微剂量线能量 ( \(y\) ) 的函数。在目前的工作中,平均\(Q\)使用双辐射作用微剂量学理论 (TDRA) 的修改版本计算了不同任务场景的 GCR。NASA 的 OLTARIS 平台被用于为低地球轨道 (LEO) 和深空的典型任务场景生成不同铝屏蔽 (0–30 g/cm 2 ) 背后的辐射环境。离子 ( \(Z\ge 1\) ) 在 1 μm 液态水球中的微剂量线性能谱是通过考虑了辐照介质内的能量损失波动和 δ 射线传输的广义分析模型计算的。发现目前基于 TDRA 的LEO 和深空任务的\(Q\)值与相应的基于 ICRP 的\(Q\)相差高达 10% 和 14%-values 和高达 3% 和 6% 来自 NASA 的\(Q\) -model。此外,它们被发现与国际空间站 (ISS) 和火星科学实验室 (MSL) 辐射评估探测器 (RAD) 测量的\(Q\)值非常一致,分别代表LEO 和深空轨道。

更新日期:2023-04-16
down
wechat
bug