当前位置: X-MOL 学术J. Ind. Microbiol. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste
Journal of Industrial Microbiology & Biotechnology ( IF 3.4 ) Pub Date : 2023-04-16 , DOI: 10.1093/jimb/kuad008
Laura G Schaerer 1 , Emily Wood 1 , Sulihat Aloba 2 , Emily Byrne 1 , M Aamir Bashir 2 , Kaushik Baruah 2 , Elizabeth Schumann 2 , Libby Umlor 2 , Ruochen Wu 2 , Hyeonseok Lee 3 , Christopher J Orme 3 , Aaron D Wilson 3 , Jeffrey A Lacey 3 , Rebecca G Ong 2 , Stephen M Techtmann 1
Affiliation  

Waste plastic presently accumulates in landfills or the environment. While natural microbial metabolisms can degrade plastic polymers, biodegradation of plastic is very slow. This study demonstrates that chemical deconstruction of polyethylene terephthalate (PET) with ammonium hydroxide can replace the rate limiting step (depolymerization) and by producing plastic-derived terephthalic acid and terephthalic acid monoamide. The deconstructed PET (DCPET) is neutralized with phosphoric acid prior to bioprocessing, resulting in a product containing biologically accessible nitrogen and phosphorus from the process reactants. Three microbial consortia obtained from compost and sediment degraded DCPET in ultrapure water and scavenged river water without addition of nutrients. No statistically significant difference was observed in growth rate compared to communities grown on DCPET in minimal culture medium. The consortia were dominated by Rhodococcus spp., Hydrogenophaga spp., and many lower abundance genera. All taxa were related to species known to degrade aromatic compounds. Microbial consortia are known to confer flexibility in processing diverse substrates. To highlight this, we also demonstrate that two microbial consortia can grow on similarly deconstructed polyesters, polyamides, and polyurethanes in water instead of medium. Our findings suggest that microbial communities may enable flexible bioprocessing of mixed plastic wastes when coupled with chemical deconstruction.

中文翻译:

多功能微生物群落迅速吸收经氢氧化铵处理的塑料废物

废塑料目前堆积在垃圾填埋场或环境中。虽然天然微生物代谢可以降解塑料聚合物,但塑料的生物降解非常缓慢。这项研究表明,用氢氧化铵对聚对苯二甲酸乙二醇酯 (PET) 进行化学解构可以取代限速步骤(解聚),并通过生产塑料衍生的对苯二甲酸和对苯二甲酸单酰胺。解构的 PET (DCPET) 在生物加工之前用磷酸中和,从而产生含有工艺反应物中生物可利用的氮和磷的产品。从堆肥和沉积物中获得的三种微生物群落在超纯水和清除河水中降解了 DCPET,而没有添加营养物质。与在基本培养基中的 DCPET 上生长的群落相比,在增长率上没有观察到统计学上的显着差异。聚生体以 Rhodococcus spp.、Hydrogenophaga spp. 和许多较低丰度的属为主。所有分类单元都与已知可降解芳香族化合物的物种有关。众所周知,微生物群落赋予处理不同底物的灵活性。为了强调这一点,我们还证明了两种微生物聚生体可以在水中而不是介质中在类似解构的聚酯、聚酰胺和聚氨酯上生长。我们的研究结果表明,当微生物群落与化学解构相结合时,可以实现混合塑料废物的灵活生物处理。和许多较低丰度的属。所有分类单元都与已知可降解芳香族化合物的物种有关。众所周知,微生物群落赋予处理不同底物的灵活性。为了强调这一点,我们还证明了两种微生物聚生体可以在水中而不是介质中在类似解构的聚酯、聚酰胺和聚氨酯上生长。我们的研究结果表明,当微生物群落与化学解构相结合时,可以实现混合塑料废物的灵活生物处理。和许多较低丰度的属。所有分类单元都与已知可降解芳香族化合物的物种有关。众所周知,微生物群落赋予处理不同底物的灵活性。为了强调这一点,我们还证明了两种微生物聚生体可以在水中而不是介质中在类似解构的聚酯、聚酰胺和聚氨酯上生长。我们的研究结果表明,当微生物群落与化学解构相结合时,可以实现混合塑料废物的灵活生物处理。
更新日期:2023-04-16
down
wechat
bug