当前位置: X-MOL 学术J. Nanomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene Nanoribbons/Manganese Oxide Nanocomposite Modified Electrode for Detection of Antimicrobial Drug Nitrofurantoin
Journal of Nanomaterials ( IF 3.791 ) Pub Date : 2023-4-22 , DOI: 10.1155/2023/5484059
Ramila D. Nagarajan, Vasanth Magesh, Ashok K. Sundramoorthy, Preethika Murugan, Raji Atchudan, Dhanraj Ganapathy, Sandeep Arya, Abdulnasser Mahmoud Karami, Mani Govindasamy

The design and development of a new kind of cost-effective electrode material with excellent selectivity and stability are still a great challenge in the field of electrochemical sensors. Recently, researchers have paid more attention to the electrochemical reduction of nitro compounds due to their hazardous nature. Nitro compounds play a vital role in various industrial applications. However, the direct discharge of nitro compounds to the environment as industrial wastewater is harmful. In this study, a nanocomposite made of 1D graphene nanoribbons decorated with manganese dioxide (GNR-MnO2) was prepared to fabricate an electrochemical transducer for the determination of nitrofurantoin (NFT) in biofluids. First, 1D GNR was prepared by unzipping of multiwalled carbon nanotubes. Second, the GNR was decorated with MnO2 by the hydrothermal reduction method. As-prepared GNR-MnO2 nanocomposite was comprehensively characterized by field emission scanning electron microscopy with EDX, XRD, UV–visible, electrochemical impedance spectroscopy, and cyclic voltammetry. Moreover, GNR-MnO2-coated glassy carbon electrode (GCE) exhibited good electrocatalytic activity toward NFT. The electroreduction of NFT was found at −0.40 V which was 50 mV lower than bare GCE. GNR-MnO2 nanocomposite modified GCE showed a well-defined linear reduction peak current for NFT from 10 nM to 1,000 µM. The selectivity of the sensor was also analyzed in the presence of other nitro compounds which confirmed that NFT can be selectively detected at −0.4 V. The GNR-MnO2 modified electrode was also able to separate reduction peaks of other nitro compounds. In addition, the detection of NFT was carried out in human urine samples with a good recovery of 99.60%–98.60%.

中文翻译:

石墨烯纳米带/氧化锰纳米复合修饰电极检测抗菌药物呋喃妥因

设计和开发一种具有优异选择性和稳定性的新型低成本电极材料仍然是电化学传感器领域的一大挑战。由于硝基化合物的危险性,最近,研究人员更加关注硝基化合物的电化学还原。硝基化合物在各种工业应用中起着至关重要的作用。然而,硝基化合物作为工业废水直接排放到环境中是有害的。在这项研究中,一种由装饰有二氧化锰的一维石墨烯纳米带制成的纳米复合材料 (GNR-MnO 2) 准备制造用于测定生物流体中的呋喃妥因 (NFT) 的电化学传感器。首先,通过解压缩多壁碳纳米管制备 1D GNR。其次,GNR通过水热还原法用 MnO 2修饰。所制备的 GNR-MnO 2纳米复合材料通过具有 EDX、XRD、紫外可见光、电化学阻抗谱和循环伏安法的场发射扫描电子显微镜进行了综合表征。此外,GNR-MnO 2包覆的玻碳电极(GCE)对NFT表现出良好的电催化活性。发现 NFT 的电还原为 -0.40 V,比裸 GCE 低 50 mV。GNR-MnO 2纳米复合材料改性 GCE 显示 NFT 的明确线性还原峰值电流从 10 nM 到 1,000  µM。还在其他硝基化合物存在的情况下分析了传感器的选择性,证实 NFT 可以在 −0.4 V 下选择性检测。 GNR-MnO 2修饰电极还能够分离其他硝基化合物的还原峰。此外,在人尿样中进行了NFT的检​​测,回收率良好,达到99.60%~98.60%。
更新日期:2023-04-23
down
wechat
bug