当前位置: X-MOL 学术Part. Fibre Toxicol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Derivation of first-order dissolution rates to estimate particle clearance and burden in the human respiratory tract
Particle and Fibre Toxicology ( IF 10 ) Pub Date : 2023-04-27 , DOI: 10.1186/s12989-023-00523-z
James S Brown 1 , Gary L Diamond 2
Affiliation  

Inhalation is a portal-of-entry for aerosols via the respiratory tract where particulate burden accumulates depending on sites of particle deposition, normal clearance mechanisms, and particle solubility. The time available for dissolution of particles is determined by the balance between the rate of particle clearance from a region and their solubility in respiratory solvents. Dissolution is a function of particle surface area divided by particle volume or mass (i.e., dissolution is inversely proportional to the physical diameter of particles). As a conservative approach, investigators commonly assume the complete and instantaneous dissolution of metals from particles depositing in the alveolar region of the respiratory tract. We derived first-order dissolution rate constants to facilitate biokinetic modeling of particle clearance, dissolution, and absorption into the blood. We then modeled pulmonary burden and total dissolution of particles over time as a function of particle size, density, and solubility. We show that assuming poorly soluble particle forms will enter the blood as quickly as highly soluble forms causes an overestimation of concentrations of the compound of interest in blood and other extrapulmonary tissues while also underestimating its pulmonary burden. We conclude that, in addition to modeling dose rates for particle deposition into the lung, physiologically based pharmacokinetic modeling of pulmonary and extrapulmonary tissues concentrations of moderately and poorly soluble materials can be improved by including estimates of lung burden and particle dissolution over time.

中文翻译:

推导一级溶解率以估计人体呼吸道中的颗粒清除率和负荷

吸入是气溶胶通过呼吸道进入的入口,根据颗粒沉积部位、正常清除机制和颗粒溶解度,颗粒负荷会累积。颗粒溶解的可用时间取决于颗粒从一个区域清除的速率和它们在呼吸溶剂中的溶解度之间的平衡。溶解度是颗粒表面积除以颗粒体积或质量的函数(即,溶解度与颗粒的物理直径成反比)。作为一种保守的方法,研究人员通常假设金属从沉积在呼吸道肺泡区域的颗粒中完全和瞬间溶解。我们推导了一级溶出速率常数,以促进颗粒清除、溶出、并吸收入血。然后,我们将肺负荷和颗粒随时间的总溶解度建模为颗粒大小、密度和溶解度的函数。我们表明,假设难溶性颗粒形式进入血液的速度与高可溶性颗粒形式一样快,会导致高估血液和其他肺外组织中目标化合物的浓度,同时也低估其肺负担。我们得出的结论是,除了对颗粒沉积到肺部的剂量率进行建模外,还可以通过包括肺负荷和颗粒随时间溶解的估计来改进基于生理学的肺和肺外组织中中度和难溶性物质浓度的药代动力学模型。然后,我们将肺负荷和颗粒随时间的总溶解度建模为颗粒大小、密度和溶解度的函数。我们表明,假设难溶性颗粒形式进入血液的速度与高可溶性颗粒形式一样快,会导致高估血液和其他肺外组织中目标化合物的浓度,同时也低估其肺负担。我们得出的结论是,除了对颗粒沉积到肺部的剂量率进行建模外,还可以通过包括肺负荷和颗粒随时间溶解的估计来改进基于生理学的肺和肺外组织中中度和难溶性物质浓度的药代动力学模型。然后,我们将肺负荷和颗粒随时间的总溶解度建模为颗粒大小、密度和溶解度的函数。我们表明,假设难溶性颗粒形式进入血液的速度与高可溶性颗粒形式一样快,会导致高估血液和其他肺外组织中目标化合物的浓度,同时也低估其肺负担。我们得出的结论是,除了对颗粒沉积到肺部的剂量率进行建模外,还可以通过包括肺负荷和颗粒随时间溶解的估计来改进基于生理学的肺和肺外组织中中度和难溶性物质浓度的药代动力学模型。我们表明,假设难溶性颗粒形式进入血液的速度与高可溶性颗粒形式一样快,会导致高估血液和其他肺外组织中目标化合物的浓度,同时也低估其肺负担。我们得出的结论是,除了对颗粒沉积到肺部的剂量率进行建模外,还可以通过包括肺负荷和颗粒随时间溶解的估计来改进基于生理学的肺和肺外组织中中度和难溶性物质浓度的药代动力学模型。我们表明,假设难溶性颗粒形式进入血液的速度与高可溶性颗粒形式一样快,会导致高估血液和其他肺外组织中目标化合物的浓度,同时也低估其肺负担。我们得出的结论是,除了对颗粒沉积到肺部的剂量率进行建模外,还可以通过包括肺负荷和颗粒随时间溶解的估计来改进基于生理学的肺和肺外组织中中度和难溶性物质浓度的药代动力学模型。
更新日期:2023-04-27
down
wechat
bug