当前位置: X-MOL 学术Curr. Org. Synth. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triazole-linked Nucleic Acids: Synthesis, Therapeutics and Synthetic Biology Applications
Current Organic Synthesis ( IF 1.8 ) Pub Date : 2023-07-12 , DOI: 10.2174/1570179420666230502123950
Vivek K Sharma 1, 2 , Priyanka Mangla 3 , Sunil K Singh 4 , Ashok K Prasad 5
Affiliation  

This article covers the triazole-linked nucleic acids where the triazole linkage (TL) replaces the natural phosphate backbone. The replacement is done at either a few selected linkages or all the phosphate linkages. Two triazole linkages, the four-atom TL1 and the six-atom TL2, have been discussed in detail. These triazole-modified oligonucleotides have found a wide range of applications, from therapeutics to synthetic biology. For example, the triazole-linked oligonucleotides have been used in the antisense oligonucleotide (ASO), small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology as therapeutic agents. Due to the ease of the synthesis and a wide range of biocompatibility, the triazole linkage TL2 has been used to assemble a functional 300-mer DNA from alkyne- and azide-functionalized 100-mer oligonucleotides as well as an epigenetically modified variant of a 335 base-pair gene from ten short oligonucleotides. These outcomes highlight the potential of triazole-linked nucleic acids and open the doors for other TL designs and artificial backbones to fully exploit the vast potential of artificial nucleic acids in therapeutics, synthetic biology and biotechnology.

中文翻译:

三唑连接的核酸:合成、治疗和合成生物学应用

本文介绍了三唑连接的核酸,其中三唑键 (TL) 取代了天然磷酸酯主链。替换是在几个选定的键或所有磷酸键上完成的。已经详细讨论了两个三唑键,即四原子 TL1 和六原子 TL2。这些三唑修饰的寡核苷酸具有广泛的应用,从治疗到合成生物学。例如,三唑连接的寡核苷酸已被用于反义寡核苷酸(ASO)、小干扰RNA(siRNA)和成簇规则间隔短回文重复(CRISPR)-Cas9技术作为治疗剂。由于易于合成和广泛的生物相容性,三唑键 TL2 已被用于从炔烃和叠氮化物功能化的 100 聚体寡核苷酸组装功能性 300 聚体 DNA 以及 335 的表观遗传修饰变体。来自十个短寡核苷酸的碱基对基因。这些结果凸显了三唑连接核酸的潜力,并为其他 TL 设计和人工主链打开了大门,以充分利用人工核酸在治疗、合成生物学和生物技术方面的巨大潜力。
更新日期:2023-07-12
down
wechat
bug