当前位置: X-MOL 学术Math. Control Signals Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the mathematical theory of ensemble (linear-Gaussian) Kalman–Bucy filtering
Mathematics of Control, Signals, and Systems ( IF 1.2 ) Pub Date : 2023-05-19 , DOI: 10.1007/s00498-023-00357-2
Adrian N. Bishop , Pierre Del Moral

The purpose of this review is to present a comprehensive overview of the theory of ensemble Kalman–Bucy filtering for continuous-time, linear-Gaussian signal and observation models. We present a system of equations that describe the flow of individual particles and the flow of the sample covariance and the sample mean in continuous-time ensemble filtering. We consider these equations and their characteristics in a number of popular ensemble Kalman filtering variants. Given these equations, we study their asymptotic convergence to the optimal Bayesian filter. We also study in detail some non-asymptotic time-uniform fluctuation, stability, and contraction results on the sample covariance and sample mean (or sample error track). We focus on testable signal/observation model conditions, and we accommodate fully unstable (latent) signal models. We discuss the relevance and importance of these results in characterising the filter’s behaviour, e.g. it is signal tracking performance, and we contrast these results with those in classical studies of stability in Kalman–Bucy filtering. We also provide a novel (and negative) result proving that the bootstrap particle filter cannot track even the most basic unstable latent signal, in contrast with the ensemble Kalman filter (and the optimal filter). We provide intuition for how the main results extend to nonlinear signal models and comment on their consequence on some typical filter behaviours seen in practice, e.g. catastrophic divergence.



中文翻译:

关于系综(线性-高斯)卡尔曼-布西滤波的数学理论

本综述的目的是全面概述连续时间、线性高斯信号和观测模型的集合卡尔曼-布西滤波理论。我们提出了一个方程组,用于描述单个粒子的流动以及样本协方差的流动和连续时间整体过滤中的样本均值。我们在许多流行的集合卡尔曼滤波变体中考虑了这些方程及其特征。给定这些方程,我们研究了它们对最优贝叶斯滤波器的渐近收敛。我们还详细研究了样本协方差和样本均值(或样本误差轨迹)上的一些非渐近时间均匀波动、稳定性和收缩结果。我们专注于可测试的信号/观察模型条件,并且我们适应完全不稳定(潜在)的信号模型。我们讨论了这些结果在表征滤波器行为方面的相关性和重要性,例如信号跟踪性能,并且我们将这些结果与卡尔曼-布西滤波稳定性的经典研究中的结果进行了对比。我们还提供了一个新颖的(和负面的)结果,证明与集合卡尔曼滤波器(和最优滤波器)相比,自举粒子滤波器甚至无法跟踪最基本的不稳定潜在信号。我们提供了关于主要结果如何扩展到非线性信号模型的直觉,并评论了它们对实践中看到的一些典型滤波器行为的影响,例如灾难性发散。我们将这些结果与卡尔曼-布西滤波稳定性的经典研究中的结果进行了对比。我们还提供了一个新颖的(和负面的)结果,证明与集合卡尔曼滤波器(和最优滤波器)相比,自举粒子滤波器甚至无法跟踪最基本的不稳定潜在信号。我们提供了关于主要结果如何扩展到非线性信号模型的直觉,并评论了它们对实践中看到的一些典型滤波器行为的影响,例如灾难性发散。我们将这些结果与卡尔曼-布西滤波稳定性的经典研究中的结果进行了对比。我们还提供了一个新颖的(和负面的)结果,证明与集合卡尔曼滤波器(和最优滤波器)相比,自举粒子滤波器甚至无法跟踪最基本的不稳定潜在信号。我们提供了关于主要结果如何扩展到非线性信号模型的直觉,并评论了它们对实践中看到的一些典型滤波器行为的影响,例如灾难性发散。

更新日期:2023-05-20
down
wechat
bug