当前位置: X-MOL 学术Int. J. Disaster Risk Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Model of the Sea–Land Transition of the Mean Wind Profile in the Tropical Cyclone Boundary Layer Considering Climate Changes
International Journal of Disaster Risk Science ( IF 4 ) Pub Date : 2023-05-23 , DOI: 10.1007/s13753-023-00488-9
Jiayao Wang , Tim K. T. Tse , Sunwei Li , Jimmy C. H. Fung

The tropical cyclone boundary layer (TCBL) connecting the underlying terrain and the upper atmosphere plays a crucial role in the overall dynamics of a tropical cyclone system. When tropical cyclones approach the coastline, the wind field inside the TCBL makes a sea–land transition to impact both onshore and offshore structures. So better understanding of the wind field inside the TCBL in the sea–land transition zone is of great importance. To this end, a semiempirical model that integrates the sea–land transition model from the Engineering Sciences Data Unit (ESDU), Huang’s refined TCBL wind field model, and the climate change scenarios from the Coupled Model Intercomparison Project Phase 6 (CMIP6) is used to investigate the influence of climate changes on the sea–land transition of the TCBL wind flow in Hong Kong. More specifically, such a semiempirical method is employed in a series of Monte-Carlo simulations to predict the wind profiles inside the TCBL across the coastline of Hong Kong under the impact of future climate changes. The wind profiles calculated based on the Monte-Carlo simulation results reveal that, under the influences of the most severe climate change scenario, slightly higher and significantly lower wind speeds are found at altitudes above and below 400 m, respectively, compared to the wind speeds recommended in the Hong Kong Wind Code of Practice. Such findings imply that the wind profile model currently adopted by the Hong Kong authorities in assessing the safety of low- to high-rise buildings may be unnecessarily over-conservative under the influence of climate change. On the other hand, the coded wind loads on super-tall buildings slightly underestimate the typhoon impacts under the severe climate change conditions anticipated for coastal southern China.

更新日期:2023-05-24
down
wechat
bug