当前位置: X-MOL 学术J. Vet. Pharmacol. Thera. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
I6 | Biosecurity in animal production to improve health and reduce antimicrobial use
Journal of Veterinary Pharmacology and Therapeutics ( IF 1.3 ) Pub Date : 2023-06-11 , DOI: 10.1111/jvp.13137


J. Dewulf

Veterinary Epidemiology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium

Introduction: Farm animals such as pig, poultry and cattle are susceptible to a wide range of diseases, including zoonotic infections, which can affect health, welfare and productivity, and thereby have a major economic impact. The implementation of biosecurity measures along the production chain presents itself as one of the major solutions to minimize the risk of introduction of these diseases into a farm, as well as their spread within the farm (Dewulf and Van Immerseel, 2018).

Recently, several studies have demonstrated a positive association between biosecurity and production parameters (Laanen et al., 2013; Postma et al., 2016) and between biosecurity and farm profitability (Collineau et al., 2017; Corrégé et al., 2012; Rojo Jimeno et al., 2016; Siekkinen et al., 2012). Moreover biosecurity has been shown to have a positive impact in reducing the amount of antimicrobials used in pig production (Laanen et al., 2013; Postma et al., 2016). This is a promising finding considering that antimicrobial use in pig production has been identified as one of the highest among livestock sectors in European Union (EU) countries (Carmo et al., 2017; Filippitzi et al., 2014; Sarrazin et al., 2019).

Despite these documented associations and the recognized importance of biosecurity measures, there are still major shortcomings in the implementation of these measures in pig farming (Backhans et al., 2015, Filippitzi et al., 2017; Laanen et al., 2013).

What is biosecurity? Biosecurity consists of the combination of all measures implemented to reduce the risk of introduction and spread of disease agents (Dewulf and Van Immerseel, 2018). The measures to be established should not be seen as constraints but rather as part of a process aimed at improving the health of animals, people and the environment. Biosecurity can be subdivided in two main components: external biosecurity which is focused at keeping pathogens out of the herd and internal biosecurity or bio-management which is focusing at preventing the spread of pathogens within the herd. Implementing biosecurity requires the adoption of a set of attitudes and behaviors to reduce the risk in all activities involving animal production or animal care.

Infectious disease may spread through many different transmission routes, some will spread airborne whereas other do not, some pathogens may be transmitted through vectors whereas other not, some may be spread through semen, … Biosecurity measures generally aim at preventing these different transmission routes in an attempt to break the infection cycle. When designing biosecurity measures one can either approach the topic from the point of view of one specific pathogen and design measures that are specifically adapted to the epidemiology of that pathogen. Alternatively, a biosecurity plan can be made more generic and include the majority of the transmission routes with a focus on those that are more important either because they are important in the transmission routes of many different pathogens or because they are of importance in the transmission pathways of the most prevalent or damaging diseases.

Biosecurity measures in livestock production.

Based upon the described transmission routes, biosecurity measures have been developed aiming to prevent either the introduction or spread of these pathogens.

External Biosecurity: In general terms it can be stated that external biosecurity measures are mainly linked to either infrastructural aspects such as organization of the buildings on the farm, presence of entrance restriction for animals and persons (e.g. hygiene lock, quarantine pen) or to measures implemented upon others (e.g. entrance restrictions of visitors, hygiene of transport vehicles, safety of feed and water, vermin and bird control). Also the purchasing policy is an important component as the introduction of non-proprietary animals or genetic material (e.g. semen) might lead to the introduction of pathogens for which there is no farm immunity. In many cases the external biosecurity is better understood and implemented by farmers as compared to the internal biosecurity. This is likely the result of the fact that external biosecurity measures have received more attention in the past as they were promoted in the control of epidemic diseases.

Internal Biosecurity: The internal biosecurity measures aim at preventing the spread of infection within the farm. Animals of different ages may have different levels of susceptibility to specific pathogens and therefore, it is crucial to keep different age groups separate and to work in a well-defined sequence according to well-designed working lines. Equipment and materials (e.g. bedding material, feeders, drinking troughs, boots, spades, syringes, needles, …) may also play an important role in the transmission of a large number of diseases. Also the management of diseased animals is an important component of the internal biosecurity. This includes proper diagnostics, isolation of the sick animals and disease registration as well as the improvement of the immunity status of susceptible animals, in particular through vaccination. Correct disease management should result in a good insight into the specific health situation of the herd and in an application of the required preventive treatments to avoid disease and its subsequent losses. In case of slower growth rate of some piglets compared to the remainder of the group, one should avoid by any means that the animals that lag behind are moved to a batch of younger piglets. Equally the stocking density in the pens should respected as a high stocking density induces stress which results in an increased susceptibility for infections and an increased excretion of germs. Finally, a good and efficient clean and disinfection is a crucial component of the internal biosecurity. A complete C&D protocol consists of seven steps (Vangroenweghe et al., 2009; Luyckx, 2016):
  • Dry cleaning to remove all organic material
  • Soaking of all surfaces preferably with detergent
  • High pressure cleaning with water to remove all dirt. This step will go much easier, faster and effective if a good soaking step is performed before
  • Drying of the stable to avoid dilution of the disinfectant applied in the next step
  • Disinfection of the stable to achieve further reduction of the concentration of germs
  • Drying of the stable to assure that animals afterwards cannot come into contact with pools of remaining disinfectant
  • Testing the efficiency of the procedure through sampling of the surface

Measuring biosecurity: “You need to be able to measure, to be able to improve.” is one of the most famous quotes of William Thomson (better known as Lord Kelvin) a famous British mathematician of the 19th century. This is certainly true for biosecurity and hygiene. The inability to measure accurately and reproducibly the biosecurity and hygiene status of a farm has long been one of the main obstacles in the pursuit of improvement of both. If farm managers need to be motivated to enhance the biosecurity or hygiene status of their farm, it is essential to provide them quantitative goals and benchmarks, which can be used to position the farm with respect to its biosecurity and hygiene status, so that the required measures for improvement can be identified and subsequently their effect measured, if possible in a quantitative way.

At Ghent University, a risk-based biosecurity scoring system (Biocheck.UGent™) scoring system was developed to quantify the on-farm biosecurity (Laanen et al., 2010). It does not start from a specific disease but rather approaches biosecurity in general and focusses on those aspects that are common for the transmission of many different types of infectious diseases. The Biocheck.UGent™ system consists of a number of questions divided into several subcategories for internal and external biosecurity. Depending on the importance of a particular biosecurity measure, the score per question is multiplied by a weight factor (Gelaude et al., 2014; Laanen et al., 2013). Also the subcategories have a specific weight factor equal to their relative importance for disease transmission. As such, the Biocheck.UGent™ scoring system provides a risk-based score which takes into account the relative importance of all different biosecurity measures. The Biocheck.UGent™ scoring tool accessible to everybody and its use is totally free of charge (www.biocheck.ugent.be). After filling in the questionnaire, the results allow evaluation of the strong and weak points of the biosecurity on a farm and it will give a basis for improvements.

Conclusions: As illustrated above, biosecurity in livestock production is a combination of many different measures aimed at prevention of introduction and spread of pathogens in a farm. It forms the basis of any disease control program. Both external and internal biosecurity measures are of utmost importance to either prevent introduction of pathogens on a farm and avoid infection spread between animal populations on a farm. Although most of the measures to be implemented are logical and generally easy to apply, it requires a strong discipline to adhere to the measures in the daily practices. Yet, those who do surely will see the benefits.

References: 1. Backhans, A., Sjölund, M., Lindberg, A., Emanuelson, U. (2015). Biosecurity level and health management practices in 60 Swedish farrow-to-finish herds. Acta Veterinaria Scandinavica, 57, 14.

2. Carmo, L..P., Schuepbach-Regula, G., Muentener, C., Chevance, A., Moulin, G., Magouras, I. (2017). Approaches for quantifying antimicrobial consumption per animal species based on national sales data: a Swiss example (2006–2013). Eurosurveillance, 22, 30458.

3. Collineau, L., Rojo-Gimeno, C., Léger, A., Backhans, A., Loesken, S., Okholm Nielsen, E., Postma, M., Emanuelson, U., Grosse Beilage, E., Sjölund, M., Wauters, E., Stärk K. D. C., Dewulf J., Belloc C., Krebs S. (2017). Herd-specific interventions to reduce antimicrobial usage in pig production without jeopardizing technical and economic performance. Preventive Veterinary Medicine, 144, 167–178.

4. Corrégé, I., Fourchon, P., Le Brun, T., Berthelot, N. (2012). Biosécurité et hygiène en élevage de porcs: état des lieux et impact sur les performances technico-économiques. Journées Recherche Porcine, 44, 101–102.

5. Dewulf, J., Van Immerseel, F., (2018). General principles of biosecurity in animal production and veterinary medicine. In Dewulf, J., Van Immerseel, F., Biosecurity in animal production and Veterinary medicine, from principle to practice. ACCO, 2018.

6. Dewulf, J., Postma M., Vanbeselaere B., Maes D., Filippitzi, M. E. (2018). Transmission of pig diseases and biosecurity in pig production. In Dewulf, J., Van Immerseel, F., Biosecurity in animal production and Veterinary medicine, from principle to practice. ACCO, 2018.

7. Filippitzi, M. E., Brinch Kruse, A., Postma, M., Sarrazin, S., Maes, D., Alban, L., Nielsen, L. R., Dewulf, J. (2017), Review of transmission routes of 24 infectious diseases preventable by biosecurity measures and comparison of the implementation of these measures in pig herds in six European countries. Transbound Emerg Dis, 65(2):381–398. doi: 10.1111/tbed.12758.

8. Gelaude, P., Schlepers, M., Verlinden, M., Laanen, M., Dewulf, J.(2014), Biocheck.UGent: a quantitative tool to measure biosecurity at broiler farms and the relationship with technical performances and antimicrobial use. Poultry Science, 93, 2740–2751.

9. Laanen, M., Beek, J., Ribbens, S., Vangroenweghe, F., Maes, D., Dewulf, J. (2010), Bioveiligheid op varkensbedrijven: ontwikkeling van een online scoresysteem en de resultaten van de eerste 99 deelnemende bedrijven. Vlaams Diergeneeskundig Tijdsschrift, 79, 302–306.

10. Laanen, M., Persoons, M., Ribbens, S., de Jong, E., Callens, B., Strubbe, M., Maes, D., Dewulf, J., (2013), Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. The Veterinary Journal, 198, 508–512.

11. Luyckx, K. (2016). Evaluation and implication of cleaning and disinfection of broiler houses and pig nursery units. Phd thesis, Ghent University. Faculty of Veterinary Medicine, Merelbeke, Belgium. https://biblio.ugent.be/publication/8081692

12. Postma, M., Backhans, A., Collineau, L., Loesken, S., Sjölund, M., Belloc, C., Emanuelson, U., Grosse Beilage, E., Stärk, K. D. C., J., D. (2016). The biosecurity status and its associations with production and management characteristics in farrow-to-finish pig herds. Animal, 10, 478–489.

13. Rojo-Gimeno, C., Postma, M., Dewulf, J., Hogeveen, H., Lauwers, L., Wauters, E. (2016), Farm-economic analysis of reducing antimicrobial use whilst adopting improved management strategies on farrow-to-finish pig farms. Preventive Veterinary Medicine. 129, 74–87.

14. Sarrazin, S., Joosten, P., Van Gompel, L., Luiken, R. E. C., Mevius, D. J. Wagenaar, J. A., Heederik, D. J. J., Dewulf. J. (2019). “Quantitative and Qualitative Analysis of Antimicrobial Usage Patterns in 180 Selected Farrow-to-finish Pig Farms from Nine European Countries Based on Single Batch and Purchase Data.” Journal of Antimicrobial Chemotherapy, 74 (3): 807–816.

15. Siekkinen, K. M., Heikkilä, J., Tammiranta, N., Rosengren, H. (2012), Measuring the costs of biosecurity on poultry farms: a case study in broiler production in Finland. Acta Veterinaria Scandinavica, 54, 12.

16. Vangroenweghe, F., Ribbens, S., Vandersmissen, T., Beek, J., Dewulf, J., Maes, D., Castryck, F. (2009). Keeping pigs healthy (in Dutch). 1st editor F. Vangroenweghe, DCL Print.



中文翻译:

I6 | 动物生产中的生物安全以改善健康并减少抗菌素的使用

J. Dewulf

兽医流行病学组,内科、生殖和人口医学系,兽医学院,根特大学,比利时根特

简介:猪、家禽和牛等农场动物易患多种疾病,包括人畜共患感染,这会影响健康、福利和生产力,从而对经济产生重大影响。在生产链上实施生物安全措施本身就是将这些疾病引入农场及其在农场内传播的风险降至最低的主要解决方案之一(Dewulf 和 Van Immerseel,2018 年)。

最近,多项研究表明生物安全与生产参数之间存在正相关关系(Laanen 等人,2013 年;Postma 等人,2016 年)以及生物安全与农场盈利能力之间存在正相关关系(Collineau 等人,2017 年;Corrégé 等人,2012 年; Rojo Jimeno 等人,2016 年;Siekkinen 等人,2012 年)。此外,生物安全已被证明对减少养猪生产中使用的抗菌药物的数量具有积极影响(Laanen 等人,2013 年;Postma 等人,2016 年)。考虑到在欧盟 (EU) 国家畜牧业中抗生素在养猪业中的使用已被确定为使用率最高的行业之一(Carmo 等人,2017 年;Filippitzi 等人,2014 年;Sarrazin 等人, 2019)。

尽管有这些记录在案的关联和公认的生物安全措施的重要性,但在养猪业中实施这些措施仍然存在重大缺陷(Backhans 等人,2015 年;Filippitzi 等人,2017 年;Laanen 等人,2013 年)。

什么是生物安全?生物安全包括为降低病原体传入和传播风险而采取的所有措施的组合(Dewulf 和 Van Immerseel,2018 年)。拟制定的措施不应被视为限制因素,而应被视为旨在改善动物、人类和环境健康的过程的一部分。生物安全可分为两个主要部分:外部生物安全,重点是将病原体拒之门外;内部生物安全或生物管理,重点是防止病原体在畜群内传播。实施生物安全需要采取一系列态度和行为来降低涉及动物生产或动物护理的所有活动的风险。

传染病可能通过许多不同的传播途径传播,有些会通过空气传播,有些则不会,有些病原体可能通过媒介传播,有些则不会,有些可能通过精液传播,……生物安全措施通常旨在防止这些不同的传播途径试图打破感染循环。在设计生物安全措施时,既可以从一种特定病原体的角度来处理该主题,也可以设计专门适用于该病原体流行病学的措施。或者,

畜牧生产中的生物安全措施。

基于所描述的传播途径,已经制定了旨在防止这些病原体的引入或传播的生物安全措施。

外部生物安全:一般而言,可以说外部生物安全措施主要与基础设施方面有关,例如农场建筑物的组织、动物和人员进入限制(例如卫生锁、检疫围栏)或对其他方面实施的措施(例如访客的进入限制、运输车辆的卫生、饲料和水的安全、害虫和鸟类的控制)。采购政策也是一个重要组成部分,因为引入非专有动物或遗传物质(例如精液)可能会导致引入农场无法免疫的病原体。在许多情况下,与内部生物安全相比,农民更容易理解和实施外部生物安全。

内部生物安全:内部生物安全措施旨在防止感染在农场内传播。不同年龄的动物可能对特定病原体具有不同程度的易感性,因此,将不同年龄组分开并根据精心设计的工作线按照明确定义的顺序工作至关重要。设备和材料(例如床上用品、喂食器、饮水槽、靴子、铲子、注射器、针头……)也可能在大量疾病的传播中发挥重要作用。患病动物的管理也是内部生物安全的重要组成部分。这包括适当的诊断、患病动物的隔离和疾病登记以及提高易感动物的免疫状态,特别是通过疫苗接种。正确的疾病管理应该能够很好地了解畜群的具体健康状况,并应用必要的预防性治疗来避免疾病及其后续损失。如果某些仔猪的生长速度比其他仔猪慢,则应以任何方式避免将落后的仔猪转移到一批较年轻的仔猪中。同样,应注意围栏中的饲养密度,因为高饲养密度会引起应激,从而导致感染易感性增加和病菌排泄增加。最后,良好有效的清洁和消毒是内部生物安全的重要组成部分。一个完整的 C&D 协议包括七个步骤(Vangroenweghe 等人,2009 年;Luyckx,2016 年):应以任何方式避免将落后的动物转移到一批较年轻的仔猪中。同样,应注意围栏中的饲养密度,因为高饲养密度会引起应激,从而导致感染易感性增加和病菌排泄增加。最后,良好有效的清洁和消毒是内部生物安全的重要组成部分。一个完整的 C&D 协议包括七个步骤(Vangroenweghe 等人,2009 年;Luyckx,2016 年):应以任何方式避免将落后的动物转移到一批较年轻的仔猪中。同样,应注意围栏中的饲养密度,因为高饲养密度会引起应激,从而导致感染易感性增加和病菌排泄增加。最后,良好有效的清洁和消毒是内部生物安全的重要组成部分。一个完整的 C&D 协议包括七个步骤(Vangroenweghe 等人,2009 年;Luyckx,2016 年):
  • 干洗以去除所有有机物质
  • 最好用清洁剂浸泡所有表面
  • 用水进行高压清洗,去除所有污垢。如果之前进行良好的浸泡步骤,此步骤将变得更容易、更快和有效
  • 干燥马厩以避免稀释下一步应用的消毒剂
  • 对马厩进行消毒以进一步降低病菌浓度
  • 对马厩进行干燥,以确保之后的动物不会接触到残留的消毒剂池
  • 通过表面取样测试程序的效率

衡量生物安全:“你需要能够衡量,才能改进。” 是 19 世纪英国著名数学家威廉·汤姆森(更广为人知的名字是开尔文勋爵)最著名的名言之一。这对于生物安全和卫生来说当然是正确的。长期以来,无法准确、可重复地测量农场的生物安全和卫生状况一直是追求两者改善的主要障碍之一。如果需要激励农场经理提高农场的生物安全或卫生状况,则必须向他们提供量化目标和基准,这些目标和基准可用于确定农场在其生物安全和卫生状况方面的定位,以便所需的可以确定改进措施并随后衡量其效果,如果可能的话以定量方式衡量。

在根特大学,开发了基于风险的生物安全评分系统 (Biocheck.UGent™) 评分系统来量化农场生物安全(Laanen 等人,2010)。它不是从特定疾病开始,而是从总体上接近生物安全,并侧重于许多不同类型传染病传播的共同方面。Biocheck.UGent™ 系统包含许多问题,分为内部和外部生物安全的几个子类别。根据特定生物安全措施的重要性,每个问题的分数乘以一个权重因子(Gelaude 等人,2014 年;Laanen 等人,2013 年)。此外,子类别有一个特定的权重因子,等于它们对疾病传播的相对重要性。因此,Biocheck。UGent™ 评分系统提供基于风险的评分,该评分考虑了所有不同生物安全措施的相对重要性。每个人都可以使用 Biocheck.UGent™ 评分工具,并且完全免费使用它 (www.biocheck.ugent.be)。填写问卷后,根据结果可以评价养殖场生物安全的优缺点,为改进提供依据。

结论:如上所述,畜牧生产中的生物安全是许多不同措施的组合,旨在防止病原体在农场的传入和传播。它构成了任何疾病控制计划的基础。外部和内部生物安全措施对于防止病原体进入农场和避免农场动物种群之间的感染传播至关重要。尽管要实施的大部分措施合乎逻辑且通常易于应用,但在日常实践中需要严格的纪律才能坚持这些措施。然而,那些这样做的人肯定会看到好处。

参考文献: 1. Backhans, A.、Sjölund, M.、Lindberg, A.、Emanuelson, U. (2015)。瑞典 60 个自产自育猪群的生物安全水平和健康管理实践。斯堪的纳维亚兽医学报,57, 14。

2. Carmo, L..P.、Schuepbach-Regula, G.、Muentener, C.、Chevance, A.、Moulin, G.、Magouras, I.(2017 年)。基于国家销售数据量化每种动物抗菌素消费的方法:瑞士的例子(2006-2013 年)。欧洲监视,22,30458。

3. Collineau, L.、Rojo-Gimeno, C.、Léger, A.、Backhans, A.、Loesken, S.、Okholm Nielsen, E.、Postma, M.、Emanuelson, U.、Grosse Beilage, E. , Sjölund, M., Wauters, E., Stärk KDC, Dewulf J., Belloc C., Krebs S. (2017)。在不损害技术和经济绩效的情况下,针对猪群的特定干预措施可减少抗生素在养猪业中的使用。预防兽医学,144、167–178。

4. Corrégé, I.、Fourchon, P.、Le Brun, T.、Berthelot, N. (2012)。Biosécurité et hygiène en élevage de porcs:état des lieux et impact sur performances technico-économiques。Journées Recherche Porcine , 44, 101–102.

5. Dewulf, J., Van Immerseel, F., (2018)。动物生产和兽医生物安全的一般原则。Dewulf, J., Van Immerseel, F.,动物生产和兽医学中的生物安全,从原理到实践。阿科,2018 年。

6. Dewulf, J., Postma M., Vanbeselaere B., Maes D., Filippitzi, ME (2018)。猪病传播与生猪生产中的生物安全。Dewulf, J., Van Immerseel, F.,动物生产和兽医学中的生物安全,从原理到实践。阿科,2018 年。

7. Filippitzi, ME, Brinch Kruse, A., Postma, M., Sarrazin, S., Maes, D., Alban, L., Nielsen, LR, Dewulf, J. (2017),24 年传播途径回顾可通过生物安全措施预防的传染病以及在六个欧洲国家的猪群中实施这些措施的比较。Transbound Emerg Dis, 65(2):381–398。内政部:10.1111/tbed.12758。

8. Gelaude, P., Schlepers, M., Verlinden, M., Laanen, M., Dewulf, J.(2014), Biocheck.UGent:衡量肉鸡养殖场生物安全的定量工具以及与技术性能和抗菌剂的使用。家禽科学,93,2740–2751。

9. Laanen, M., Beek, J., Ribbens, S., Vangroenweghe, F., Maes, D., Dewulf, J. (2010), Bioveiligheid op varkensbedrijven: ontwikkeling van een online scoresysteem en de resultaten van de eerste 99 deelnemende bedrijven。Vlaams Diergeneeskundig Tijdsschrift , 79, 302–306.

10. Laanen, M.、Persoons, M.、Ribbens, S.、de Jong, E.、Callens, B.、Strubbe, M.、Maes, D.、Dewulf, J., (2013),生物安全之间的关系猪群的生产/抗菌处理特征。兽医杂志,198,508–512。

11. Luyckx, K. (2016)。肉鸡舍及保育舍清洁消毒评价及启示。博士论文,根特大学。兽医学院,梅雷尔贝克,比利时。https://biblio.ugent.be/publication/8081692

12. Postma, M., Backhans, A., Collineau, L., Loesken, S., Sjölund, M., Belloc, C., Emanuelson, U., Grosse Beilage, E., Stärk, KDC, J., D.(2016 年)。育肥猪群的生物安全状况及其与生产和管理特征的关联。动物, 10, 478–489。

13. Rojo-Gimeno, C.、Postma, M.、Dewulf, J.、Hogeveen, H.、Lauwers, L.、Wauters, E.(2016 年),在采用改进管理策略的同时减少抗菌药物使用的农场经济分析在从分娩到肥育的养猪场。预防兽医学。129, 74–87。

14. Sarrazin, S., Joosten, P., Van Gompel, L., Luiken, REC, Mevius, DJ Wagenaar, JA, Heederik, DJJ, Dewulf。J. (2019)。“根据单批次和购买数据对来自 9 个欧洲国家的 180 个选定的从分娩到育肥猪场的抗菌剂使用模式进行定量和定性分析。” 抗菌化疗杂志,74 (3):807–816。

15. Siekkinen, KM、Heikkilä, J.、Tammiranta, N.、Rosengren, H. (2012),衡量家禽养殖场生物安全的成本:芬兰肉鸡生产的案例研究。斯堪的纳维亚兽医学报,54, 12。

16. Vangroenweghe, F.、Ribbens, S.、Vandersmissen, T.、Beek, J.、Dewulf, J.、Maes, D.、Castryck, F. (2009)。保持猪的健康(荷兰语)。第一编辑 F. Vangroenweghe,DCL Print。

更新日期:2023-06-13
down
wechat
bug