当前位置: X-MOL 学术Random Struct. Algorithms › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Matchings on trees and the adjacency matrix: A determinantal viewpoint
Random Structures and Algorithms ( IF 1 ) Pub Date : 2023-06-15 , DOI: 10.1002/rsa.21167
András Mészáros 1
Affiliation  

Let G $$ G $$ be a finite tree. For any matching M $$ M $$ of G $$ G $$ , let U ( M ) $$ U(M) $$ be the set of vertices uncovered by M $$ M $$ . Let G $$ {\mathcal{M}}_G $$ be a uniform random maximum size matching of G $$ G $$ . In this paper, we analyze the structure of U ( G ) $$ U\left({\mathcal{M}}_G\right) $$ . We first show that U ( G ) $$ U\left({\mathcal{M}}_G\right) $$ is a determinantal process. We also show that for most vertices of G $$ G $$ , the process U ( G ) $$ U\left({\mathcal{M}}_G\right) $$ in a small neighborhood of that vertex can be well approximated based on a somewhat larger neighborhood of the same vertex. Then we show that the normalized Shannon entropy of U ( G ) $$ U\left({\mathcal{M}}_G\right) $$ can be also well approximated using the local structure of G $$ G $$ . In other words, in the realm of trees, the normalized Shannon entropy of U ( G ) $$ U\left({\mathcal{M}}_G\right) $$ —that is, the normalized logarithm of the number of maximum size matchings of G $$ G $$ —is a Benjamini-Schramm continuous parameter.

中文翻译:

树和邻接矩阵的匹配:决定性的观点

G $$ G $$ 是一棵有限树。对于任何匹配 中号 $$ M $$ G $$ G $$ , 让 U 中号 $$ U(M) $$ 是未被覆盖的顶点集 中号 $$ M $$ 。让 G $$ {\mathcal{M}}_G $$ 是均匀随机最大尺寸匹配 G $$ G $$ 。在本文中,我们分析了结构 U G $$ U\左({\mathcal{M}}_G\右) $$ 。我们首先证明 U G $$ U\左({\mathcal{M}}_G\右) $$ 是一个决定性的过程。我们还表明,对于大多数顶点 G $$ G $$ ,过程 U G $$ U\左({\mathcal{M}}_G\右) $$ 在该顶点的一个小邻域中,可以基于同一顶点的稍大的邻域来很好地近似。然后我们证明归一化香农熵 U G $$ U\左({\mathcal{M}}_G\右) $$ 也可以使用局部结构很好地近似 G $$ G $$ 。换句话说,在树木领域,归一化香农熵为 U G $$ U\左({\mathcal{M}}_G\右) $$ —即最大尺寸匹配数的归一化对数 G $$ G $$ — 是 Benjamini-Schramm 连续参数。
更新日期:2023-06-15
down
wechat
bug