当前位置: X-MOL 学术Exp. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nine Point Bending Test Technique for Understanding of Sintered Silver Die Bonding Failure Mechanism
Experimental Techniques ( IF 1.6 ) Pub Date : 2023-07-19 , DOI: 10.1007/s40799-023-00664-y
K. Wakamoto , K. Fuji , T. Otsuka , K. Nakahara , T. Namazu

The Sintered silver (s–Ag) die degradation is commonly evaluated by thermal shocked test (TST), which evaluates the material’s durability against a heating/cooling cycle. Materials with different coefficient of thermal expansion (CTE) give rise to thermal out-of-plane deformation surrounding the bonding part, which deteriorates s–Ag die part by repeated thermal and mechanical stress during TST. For the safe and reliable design of s–Ag die toward long-term durability, the contribution of thermal and mechanical stresses to degradation should be understood separately. Clarify the overall s–Ag die degradation mechanism during TST compared to the new mechanical bending test that can apply out-of-plane deformation. The authors propose a new mechanical bending test technique, called the nine-point bending (NBT) test, which can provide out-of-plane deformation with a s–Ag die-attached specimen as TST like. By comparing NBT and TST, the degradation mechanism of the s–Ag die-attach element can be understood from both thermal and mechanical aspects. In scanning acoustic tomography (SAT) analysis, a similar degradation ratio between NBT and TST is obtained, which indicates that mechanical stress plays a significant role in deteriorating s–Ag die layer in TST. After 1000 cycles, however, cracking and s–Ag material aging coexist in TST only, destabilizing s–Ag die fracture. s–Ag main degradation cause in TST is clarified with mechanical stress by comparing NBT. In addition, thermally material aging destabilized the s–Ag degradation during TST.



中文翻译:

用于了解烧结银芯片粘合失效机制的九点弯曲测试技术

烧结银 (s–Ag) 芯片的退化通常通过热冲击测试 (TST) 进行评估,该测试评估材料在加热/冷却循环中的耐久性。具有不同热膨胀系数 (CTE) 的材料会在接合部分周围产生热面外变形,从而在 TST 期间因重复的热应力和机械应力而使 s-Ag 芯片部分劣化。为了安全可靠地设计 s-Ag 芯片以实现长期耐用性,应分别了解热应力和机械应力对降解的影响。与可应用面外变形的新机械弯曲测试相比,阐明 TST 期间的整体 s-Ag 芯片退化机制。作者提出了一种新的机械弯曲测试技术,称为九点弯曲(NBT)测试,它可以提供像 TST 一样的 As-Ag 芯片附着样本的面外变形。通过比较NBT和TST,可以从热和机械方面了解s-Ag芯片粘接元件的降解机制。在扫描声学断层扫描 (SAT) 分析中,获得了 NBT 和 TST 之间相似的退化比率,这表明机械应力在 TST 中 s-Ag 芯片层的退化中起着重要作用。然而,经过 1000 次循环后,裂纹和 s-Ag 材料老化仅在 TST 中共存,导致 s-Ag 模具断裂不稳定。通过比较 NBT,用机械应力阐明了 TST 中 s-Ag 降解的主要原因。此外,热材料老化破坏了 TST 期间 s-Ag 降解的稳定性。s-Ag 芯片粘接元件的降解机制可以从热和机械两个方面来理解。在扫描声学断层扫描 (SAT) 分析中,获得了 NBT 和 TST 之间相似的退化比率,这表明机械应力在 TST 中 s-Ag 芯片层的退化中起着重要作用。然而,经过 1000 次循环后,裂纹和 s-Ag 材料老化仅在 TST 中共存,导致 s-Ag 模具断裂不稳定。通过比较 NBT,用机械应力阐明了 TST 中 s-Ag 降解的主要原因。此外,热材料老化破坏了 TST 期间 s-Ag 降解的稳定性。s-Ag 芯片粘接元件的降解机制可以从热和机械两个方面来理解。在扫描声学断层扫描 (SAT) 分析中,获得了 NBT 和 TST 之间相似的退化比率,这表明机械应力在 TST 中 s-Ag 芯片层的退化中起着重要作用。然而,经过 1000 次循环后,裂纹和 s-Ag 材料老化仅在 TST 中共存,导致 s-Ag 模具断裂不稳定。通过比较 NBT,用机械应力阐明了 TST 中 s-Ag 降解的主要原因。此外,热材料老化破坏了 TST 期间 s-Ag 降解的稳定性。这表明机械应力在 TST 中 s-Ag 芯片层的恶化中起着重要作用。然而,经过 1000 次循环后,裂纹和 s-Ag 材料老化仅在 TST 中共存,导致 s-Ag 模具断裂不稳定。通过比较 NBT,用机械应力阐明了 TST 中 s-Ag 降解的主要原因。此外,热材料老化破坏了 TST 期间 s-Ag 降解的稳定性。这表明机械应力在 TST 中 s-Ag 芯片层的恶化中起着重要作用。然而,经过 1000 次循环后,裂纹和 s-Ag 材料老化仅在 TST 中共存,导致 s-Ag 模具断裂不稳定。通过比较 NBT,用机械应力阐明了 TST 中 s-Ag 降解的主要原因。此外,热材料老化破坏了 TST 期间 s-Ag 降解的稳定性。

更新日期:2023-07-20
down
wechat
bug