当前位置: X-MOL 学术Biol. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains
Biological Research ( IF 6.7 ) Pub Date : 2023-07-29 , DOI: 10.1186/s40659-023-00453-2
Eduardo I Kessi-Pérez 1, 2 , Eric Acuña 2 , Camila Bastías 2 , Leyanis Fundora 2 , Manuel Villalobos-Cid 3 , Andrés Romero 4, 5 , Sakshi Khaiwal 6 , Matteo De Chiara 6 , Gianni Liti 6 , Francisco Salinas 4, 5 , Claudio Martínez 1, 2
Affiliation  

For more than 20 years, Saccharomyces cerevisiae has served as a model organism for genetic studies and molecular biology, as well as a platform for biotechnology (e.g., wine production). One of the important ecological niches of this yeast that has been extensively studied is wine fermentation, a complex microbiological process in which S. cerevisiae faces various stresses such as limited availability of nitrogen. Nitrogen deficiencies in grape juice impair fermentation rate and yeast biomass production, leading to sluggish or stuck fermentations, resulting in considerable economic losses for the wine industry. In the present work, we took advantage of the “1002 Yeast Genomes Project” population, the most complete catalogue of the genetic variation in the species and a powerful resource for genotype-phenotype correlations, to study the adaptation to nitrogen limitation in wild and domesticated yeast strains in the context of wine fermentation. We found that wild and domesticated yeast strains have different adaptations to nitrogen limitation, corroborating their different evolutionary trajectories. Using a combination of state-of-the-art bioinformatic (GWAS) and molecular biology (CRISPR-Cas9) methodologies, we validated that PNP1, RRT5 and PDR12 are implicated in wine fermentation, where RRT5 and PDR12 are also involved in yeast adaptation to nitrogen limitation. In addition, we validated SNPs in these genes leading to differences in fermentative capacities and adaptation to nitrogen limitation. Altogether, the mapped genetic variants have potential applications for the genetic improvement of industrial yeast strains.

中文翻译:

与葡萄酒发酵相关的单核苷酸多态性以及野生和驯化酵母菌株对氮限制的适应

20多年来,酿酒酵母一直作为遗传研究和分子生物学的模式生物,以及生物技术(例如葡萄酒生产)的平台。这种酵母的重要生态位之一是葡萄酒发酵,这是一种复杂的微生物过程,酿酒酵母在该过程中面临各种压力,例如氮的可用性有限。葡萄汁中的氮缺乏会损害发酵速率和酵母生物量的产生,导致发酵缓慢或停滞,给葡萄酒行业带来相当大的经济损失。在目前的工作中,我们利用“1002酵母基因组计划”种群这一最完整的物种遗传变异目录和基因型-表型相关性的强大资源,研究野生和驯化酵母对氮限制的适应葡萄酒发酵中的酵母菌株。我们发现野生和驯化的酵母菌株对氮限制具有不同的适应能力,证实了它们不同的进化轨迹。结合最先进的生物信息学 (GWAS) 和分子生物学 (CRISPR-Cas9) 方法,我们验证了 PNP1、RRT5 和 PDR12 与葡萄酒发酵有关,其中 RRT5 和 PDR12 还参与酵母适应氮限制。此外,我们还验证了这些基因中的单核苷酸多态性(SNP)会导致发酵能力和对氮限制的适应差异。总而言之,所绘制的遗传变异对于工业酵母菌株的遗传改良具有潜在的应用。
更新日期:2023-07-29
down
wechat
bug