当前位置: X-MOL 学术IEEE Electr. Insul. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Young Professionals
IEEE Electrical Insulation Magazine ( IF 2.9 ) Pub Date : 2023-08-16 , DOI: 10.1109/mei.2023.10220235
Miles Bengtson 1
Affiliation  

My ears perked up as the conference speaker lamented the challenges associated with testing spacecraft materials in terrestrial laboratories and wished for a better solution. It was the 2019 Applied Space Environments Conference in Burbank, California, and I was a second-year PhD student at the University of Colorado Boulder at the time. The speaker was discussing how electron sources available in the laboratory are monoenergetic, whereas the space environment contains electrons distributed across a wide range of energies simultaneously. This is unfortunate, as dielectrics and other space materials must undergo significant radiation testing on the ground to determine how they will perform in space. Insulating materials are widely used on spacecraft in cable harnesses, thermal blanketing, and solar array assemblies. When these materials are exposed to the space environment, complex phenomena can occur, such as radiation-induced conductivity and changes in color, all of which depend on the energy of the incident electron irradiation. Though various workarounds have been attempted to deal with the differences between monoenergetic laboratory electron sources and broad-spectrum space radiation, for most materials ground testing is conducted in radiation conditions that are simply not representative of the environment in which those materials operate. As a result, adoption of new, advanced, dielectric materials for space missions is slow, as many space-craft designers prefer to rely on legacy materials that have extensive flight heritage.

中文翻译:

年轻的专业人​​士

当会议发言人对在地面实验室测试航天器材料所面临的挑战表示遗憾并希望有更好的解决方案时,我的耳朵竖了起来。那是 2019 年在加利福尼亚州伯班克举行的应用空间环境会议,当时我是科罗拉多大学博尔德分校的二年级博士生。演讲者正在讨论实验室中可用的电子源是单能的,而太空环境中包含同时分布在多种能量范围内的电子。这是不幸的,因为电介质和其他太空材料必须在地面上进行大量的辐射测试,以确定它们在太空中的表现。绝缘材料广泛应用于航天器的电缆线束、隔热层和太阳能电池阵列组件中。当这些材料暴露在太空环境中时,会发生复杂的现象,例如辐射引起的导电性和颜色的变化,所有这些都取决于入射电子辐照的能量。尽管已经尝试了各种解决方法来解决单能实验室电子源和广谱空间辐射之间的差异,但对于大多数材料来说,地面测试是在辐射条件下进行的,而这些辐射条件根本不能代表这些材料的工作环境。因此,在太空任务中采用新型先进介电材料的速度很慢,因为许多航天器设计师更喜欢依赖具有广泛飞行传统的传统材料。所有这些都取决于入射电子辐射的能量。尽管已经尝试了各种解决方法来解决单能实验室电子源和广谱空间辐射之间的差异,但对于大多数材料来说,地面测试是在辐射条件下进行的,而这些辐射条件根本不能代表这些材料的工作环境。因此,在太空任务中采用新型先进介电材料的速度很慢,因为许多航天器设计师更喜欢依赖具有广泛飞行传统的传统材料。所有这些都取决于入射电子辐射的能量。尽管已经尝试了各种解决方法来解决单能实验室电子源和广谱空间辐射之间的差异,但对于大多数材料来说,地面测试是在辐射条件下进行的,而这些辐射条件根本不能代表这些材料的工作环境。因此,在太空任务中采用新型先进介电材料的速度很慢,因为许多航天器设计师更喜欢依赖具有广泛飞行传统的传统材料。对于大多数材料来说,地面测试是在辐射条件下进行的,而这些辐射条件根本不能代表这些材料的工作环境。因此,在太空任务中采用新型先进介电材料的速度很慢,因为许多航天器设计师更喜欢依赖具有广泛飞行传统的传统材料。对于大多数材料来说,地面测试是在辐射条件下进行的,而这些辐射条件根本不能代表这些材料的工作环境。因此,在太空任务中采用新型先进介电材料的速度很慢,因为许多航天器设计师更喜欢依赖具有广泛飞行传统的传统材料。
更新日期:2023-08-19
down
wechat
bug