当前位置: X-MOL 学术Deep Sea Res. Part II Top. Stud. Oceanogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A data-assimilative modeling investigation of Gulf Stream variability
Deep Sea Research Part II: Topical Studies in Oceanography ( IF 3 ) Pub Date : 2023-08-19 , DOI: 10.1016/j.dsr2.2023.105319
Shun Mao , Ruoying He , John Bane , Glen Gawarkiewicz , Robert E. Todd

An advanced data-assimilative ocean circulation model is used to investigate Gulf Stream (GS) variability during 2017–2018. The modeling system applies a strong-constraint, 4D variational data assimilation algorithm. It assimilates satellite-based sea surface height and sea surface temperature measurements and in situ temperature and salinity profiles. Model skill assessment metrics along with comparisons of GS position and GS's three-dimensional mean kinetic energy with historical observations are applied to validate the data-assimilative model. The resulting time- and space-continuous ocean state estimates are used to diagnose eddy kinetic energy conversion and cross-stream eddy heat and salt fluxes over the two-year study period. The processes leading to kinetic energy conversion are primarily due to GS meanders. Significant inverse energy cascading (EKE→MKE and EKE→EPE) can occur during GS-eddy interactions, particularly during onshore intrusions or offshore meanderings of the GS. Throughout the two-year study period, the cross-stream eddy heat and salt fluxes off Cape Hatteras were predominantly positive (onshore). Both GS offshore meandering (occurring 44% of the time and associated with shelf/slope water export) and GS intrusion (occurring 56% of the time) contribute to onshore heat and salt transport. Improved understanding of these processes and dynamics requires strong integration of an advanced observational infrastructure that combines remote sensing; fixed, mobile, and shore-based observing components; and high-resolution data assimilative models.



中文翻译:

湾流变化的数据同化建模研究

使用先进的数据同化海洋环流模型来研究 2017 年至 2018 年期间的湾流 (GS) 变化。建模系统采用强约束、4D变分数据同化算法。它同化基于卫星的海面高度和海面温度测量以及原位温度和盐度剖面。应用模型技能评估指标以及 GS 位置和 GS 三维平均动能与历史观测值的比较来验证数据同化模型。由此产生的时间和空间连续海洋状态估计用于诊断两年研究期间的涡流动能转换以及跨流涡流热和盐通量。导致动能转换的过程主要是由于 GS 曲折。在 GS-涡流相互作用期间,特别是在 GS 陆上侵入或近海蜿蜒期间,可能会发生显着的逆能量级联(EKE→MKE 和 EKE→EPE)。在整个两年的研究期间,哈特拉斯角的横流涡流热和盐通量主要为正值(陆上)。GS 近海蜿蜒(发生 44% 的时间,与陆架/斜坡水输出相关)和 GS 入侵(发生 56% 的时间)都有助于陆上热量和盐的输送。提高对这些过程和动态的理解需要与遥感相结合的先进观测基础设施的强有力集成;固定、移动和岸基观测组件;和高分辨率数据同化模型。特别是在 GS 陆上入侵或近海蜿蜒航行期间。在整个两年的研究期间,哈特拉斯角的横流涡流热和盐通量主要为正值(陆上)。GS 近海蜿蜒(发生 44% 的时间,与陆架/斜坡水输出相关)和 GS 入侵(发生 56% 的时间)都有助于陆上热量和盐的输送。提高对这些过程和动态的理解需要与遥感相结合的先进观测基础设施的强有力集成;固定、移动和岸基观测组件;和高分辨率数据同化模型。特别是在 GS 陆上入侵或近海蜿蜒航行期间。在整个两年的研究期间,哈特拉斯角的横流涡流热和盐通量主要为正值(陆上)。GS 近海蜿蜒(发生 44% 的时间,与陆架/斜坡水输出相关)和 GS 入侵(发生 56% 的时间)都有助于陆上热量和盐的输送。提高对这些过程和动态的理解需要与遥感相结合的先进观测基础设施的强有力集成;固定、移动和岸基观测组件;和高分辨率数据同化模型。GS 近海蜿蜒(发生 44% 的时间,与陆架/斜坡水输出相关)和 GS 入侵(发生 56% 的时间)都有助于陆上热量和盐的输送。提高对这些过程和动态的理解需要与遥感相结合的先进观测基础设施的强有力集成;固定、移动和岸基观测组件;和高分辨率数据同化模型。GS 近海蜿蜒(发生 44% 的时间,与陆架/斜坡水输出相关)和 GS 入侵(发生 56% 的时间)都有助于陆上热量和盐的输送。提高对这些过程和动态的理解需要与遥感相结合的先进观测基础设施的强有力集成;固定、移动和岸基观测组件;和高分辨率数据同化模型。和岸基观测组件;和高分辨率数据同化模型。和岸基观测组件;和高分辨率数据同化模型。

更新日期:2023-08-24
down
wechat
bug