当前位置: X-MOL 学术Ergod. Theory Dyn. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A set of 2-recurrence whose perfect squares do not form a set of measurable recurrence
Ergodic Theory and Dynamical Systems ( IF 0.9 ) Pub Date : 2023-09-04 , DOI: 10.1017/etds.2023.51
JOHN T. GRIESMER

We say that $S\subseteq \mathbb Z$ is a set of k-recurrence if for every measure-preserving transformation T of a probability measure space $(X,\mu )$ and every $A\subseteq X$ with $\mu (A)>0$ , there is an $n\in S$ such that $\mu (A\cap T^{-n} A\cap T^{-2n}\cap \cdots \cap T^{-kn}A)>0$ . A set of $1$ -recurrence is called a set of measurable recurrence. Answering a question of Frantzikinakis, Lesigne, and Wierdl [Sets of k-recurrence but not (k+1)-recurrence. Ann. Inst. Fourier (Grenoble)56(4) (2006), 839–849], we construct a set of $2$ -recurrence S with the property that $\{n^2:n\in S\}$ is not a set of measurable recurrence.

中文翻译:

一组 2-递归,其完美平方不形成一组可测量的递归

我们这么说 $S\subseteq \mathbb Z$ 是一组k- 如果对于每个保留度量的变换,则重复时间概率测度空间的 $(X,\mu)$ 和每一个 $A\子集X$ $\mu (A)>0$ , 有一个 $n\新元 这样 $\mu (A\cap T^{-n} A\cap T^{-2n}\cap \cdots \cap T^{-kn}A)>0$ 。一套 $1$ -recurrence 称为一组可测量的复发。回答 Frantzikinakis、Lesigne 和 Wierdl 的问题 [Sets ofk- 复发但不(k+1)-复发。安. 研究所。傅里叶(格勒诺布尔)56(4) (2006), 839–849],我们构建了一组 $2$ -复发S与财产 $\{n^2:n\in S\}$ 不是一组可测量的复发。
更新日期:2023-09-04
down
wechat
bug