当前位置: X-MOL 学术Meteorol. Z. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Actual versus geostrophic wind: statistics from 12‑year measurements at the 280 m high Hamburg Weather Mast
Meteorologische Zeitschrift ( IF 1.2 ) Pub Date : 2023-09-11 , DOI: 10.1127/metz/2023/1097
Burghard Brümmer

The geostrophic wind, representing the horizontal pressure gradient as driving force of motion, is often taken as a first guess of the actual wind. There is, however no fixed relation between them but depends on various influencing factors. How good is this first guess i.e. to which extent do these factors change the actual versus geostrophic wind relation? A 12‑year set of six-hourly (00, 06, 12, 18 UT) geostrophic ( U g $U_{\text{g}}$ ) wind data taken from the ERA-Interim model and actual ( U $U$ ) wind data measured at five levels (10, 50, 110, 175, 250 m) at the Hamburg Weather Mast, Germany, is used to statistically study the dependence of the speed ratio U ∕ U g $U/U_{\text{g}}$ and the angle difference α g - α $\alpha_{\text{g}}-\nobreak\alpha$ on various influence parameters: height z $z$ above ground, geostrophic wind speed U g $U_{\text{g}}$ , thermal wind U therm $U_{\text{therm}}$ , surface roughness z 0 $z_{0}$ , and day-night stratification differences. The actual wind has a Weibull-like frequency distribution (FD) with systematically changing parameters from lower to upper levels. In contrast, the U g $U_{\text{g}}$ ‑FD has the same constant Weibull-like shape at all levels. This does not imply that U g $U_{\text{g}}$ is constant with height, but that the various configurations of thermal wind almost balance. The U therm $U_{\text{therm}}$ ‑FD itself is Weibull-like. The all-times FDs of U ∕ U g $U/U_{\text{g}}$ ( α g - α $\alpha_{\text{g}}-\nobreak\alpha$ ) peak at 0.25 (47°) at 10 m and gradually increase (decrease) to 0.77 (17°) at 250 m. The U ∕ U g $U/U_{\text{g}}$ ratio decreases systematically with increasing U g $U_{\text{g}}$ towards height-staggered asymptotic limits for U g > 3 0 m/s $U_{\text{g}}>\nobreak 30\,\text{m/s}$ . With respect to the thermal wind influence, cold-air advection (CAA) causes on average 1–1.5 m/s larger U values accompanied with 12° less wind turning between 10 m and 250 m than warm-air advection (WAA) for the same low-level U g $U_{\text{g}}$ forcing. The z 0 $z_{0}$ values around the Hamburg Weather Mast vary between 0.3 and 1.1 m and lead to 0.1 differences in the U ∕ U g $U/U_{\text{g}}$ ratio. Vertical stratification has the largest impact on U ∕ U g $U/U_{\text{g}}$ and α g - α $\alpha_{\text{g}}-\nobreak\alpha$ . Stable stratification developing during night with decreased or ceased turbulence decouples upper and lower levels with opposite effects: wind decreases below and increases above. The day-night crossover height is on average around 100 m. The percentage of supergeostrophic ( U > U g $U>\nobreak U_{\text{g}}$ ) cases increases with height. At low levels, U > U g $U>\nobreak U_{\text{g}}$ occurs only during daytime and with U g > 5 m/s $U_{\text{g}}>\nobreak 5\,\text{m/s}$ . At upper levels, U > U g $U>\nobreak U_{\text{g}}$ can occur during all times of the day, preferably during night with about 30 % of time, and with U g < 5 m/s $U_{\text{g}}<\nobreak 5\,\text{m/s}$ . For U g > 1 5 m/s $U_{\text{g}}>\nobreak 15\,\text{m/s}$ stable stratification cannot sustain.

中文翻译:

实际风与地转风:280 m 高的汉堡气象桅杆 12 年测量的统计数据

地转风代表水平压力梯度作为运动的驱动力,通常被视为对实际风的初步猜测。但它们之间并没有固定的关系,而是取决于各种影响因素。第一个猜测有多好,即这些因素在多大程度上改变了实际与地转风的关系?一组 12 年六小时(00、06、12、18 UT)地转 ( U g $U_{\text{g}}$ ) 风数据,取自 ERA-Interim 模型和实际 ( U $U$ )利用德国汉堡气象桅杆在五个高度(10、50、110、175、250 m)测得的风数据,用于统计研究速度比 U ∕ U g $U/U_{\text{ g}}$ 和角度差 α g - α $\alpha_{\text{g}}-\nobreak\alpha$ 对各种影响参数的影响:地面高度 z $z$,地转风速 U g $U_{\text{g}}$ 、热风 U therm $U_{\text{therm}}$ 、表面粗糙度 z 0 $z_{0}$ 以及昼夜层结差异。实际风具有类似威布尔的频率分布(FD),其参数从低层到高层系统地变化。相反,U g $U_{\text{g}}$ ‑FD 在所有级别上都具有相同的恒定威布尔形状。这并不意味着 U g $U_{\text{g}}$ 随高度恒定,而是表明热风的各种配置几乎是平衡的。U therm $U_{\text{therm}}$ ‑FD 本身是类威布尔的。U ∕ U g $U/U_{\text{g}}$ ( α g - α $\alpha_{\text{g}}-\nobreak\alpha$ ) 的所有时间 FD 峰值位于 0.25 (47° )在 10 m 处逐渐增大(减小)至 250 m 处的 0.77(17°)。U ∕ U g $U/U_{\text{g}}$ 比率随着 U g $U_{\text{g}}$ 向高度交错渐近极限的增加而系统地减小(U g > 3 0 m/s $) U_{\text{g}}>\nobreak 30\,\text{m/s}$ 。就热风影响而言,冷空气平流(CAA)导致的 U 值平均比暖空气平流(WAA)大 1-1.5 m/s,同时 10 m 至 250 m 之间的风转向减少 12°。相同的低级 U g $U_{\text{g}}$ 强迫。汉堡气象桅杆周围的 z 0 $z_{0}$ 值在 0.3 到 1.1 m 之间变化,导致 U ∕ U g $U/U_{\text{g}}$ 比率存在 0.1 的差异。垂直分层对 U ∕ U g $U/U_{\text{g}}$ 和 α g - α $\alpha_{\text{g}}-\nobreak\alpha$ 的影响最大。夜间形成稳定的分层,湍流减少或停止,使上层和下层脱钩,产生相反的效果:下面的风减少,上面的风增加。昼夜交叉高度平均在100m左右。超地转 ( U > U g $U>\nobreak U_{\text{g}}$ ) 情况的百分比随着高度的增加而增加。在低水平时,U > U g $U>\nobreak U_{\text{g}}$ 仅在白天发生且 U g > 5 m/s $U_{\text{g}}>\nobreak 5\, \text{米/秒}$ 。在高层,U > U g $U>\nobreak U_{\text{g}}$ 可能发生在一天中的所有时间,最好是在夜间,大约 30 % 的时间,且 U g < 5 m/s $U_{\text{g}}<\nobreak 5\,\text{m/s}$ 。对于 U g > 1 5 m/s $U_{\text{g}}>\nobreak 15\,\text{m/s}$ 稳定分层无法维持。下面的风减弱,上面的风增强。昼夜交叉高度平均在100m左右。超地转 ( U > U g $U>\nobreak U_{\text{g}}$ ) 情况的百分比随着高度的增加而增加。在低水平时,U > U g $U>\nobreak U_{\text{g}}$ 仅在白天发生且 U g > 5 m/s $U_{\text{g}}>\nobreak 5\, \text{米/秒}$ 。在高层,U > U g $U>\nobreak U_{\text{g}}$ 可能发生在一天中的所有时间,最好是在夜间,大约 30 % 的时间,且 U g < 5 m/s $U_{\text{g}}<\nobreak 5\,\text{m/s}$ 。对于 U g > 1 5 m/s $U_{\text{g}}>\nobreak 15\,\text{m/s}$ 稳定分层无法维持。下面的风减弱,上面的风增强。昼夜交叉高度平均在100m左右。超地转 ( U > U g $U>\nobreak U_{\text{g}}$ ) 情况的百分比随着高度的增加而增加。在低水平时,U > U g $U>\nobreak U_{\text{g}}$ 仅在白天发生且 U g > 5 m/s $U_{\text{g}}>\nobreak 5\, \text{米/秒}$ 。在高层,U > U g $U>\nobreak U_{\text{g}}$ 可能发生在一天中的所有时间,最好是在夜间,大约 30 % 的时间,且 U g < 5 m/s $U_{\text{g}}<\nobreak 5\,\text{m/s}$ 。对于 U g > 1 5 m/s $U_{\text{g}}>\nobreak 15\,\text{m/s}$ 稳定分层无法维持。U > U g $U>\nobreak U_{\text{g}}$ 仅发生在白天且 U g > 5 m/s $U_{\text{g}}>\nobreak 5\,\text{m /s}$ . 在高层,U > U g $U>\nobreak U_{\text{g}}$ 可能发生在一天中的所有时间,最好是在夜间,大约 30 % 的时间,且 U g < 5 m/s $U_{\text{g}}<\nobreak 5\,\text{m/s}$ 。对于 U g > 1 5 m/s $U_{\text{g}}>\nobreak 15\,\text{m/s}$ 稳定分层无法维持。U > U g $U>\nobreak U_{\text{g}}$ 仅发生在白天且 U g > 5 m/s $U_{\text{g}}>\nobreak 5\,\text{m /s}$ . 在高层,U > U g $U>\nobreak U_{\text{g}}$ 可能发生在一天中的所有时间,最好是在夜间,大约 30 % 的时间,且 U g < 5 m/s $U_{\text{g}}<\nobreak 5\,\text{m/s}$ 。对于 U g > 1 5 m/s $U_{\text{g}}>\nobreak 15\,\text{m/s}$ 稳定分层无法维持。
更新日期:2023-09-08
down
wechat
bug