当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated hydropyrolysis and vapor-phase hydrodeoxygenation process with Pd/Al2O3 for production of advanced oxygen-containing biofuels from cellulosic wastes
Fuel Processing Technology ( IF 7.5 ) Pub Date : 2023-09-09 , DOI: 10.1016/j.fuproc.2023.107948
Jia Wang , Jianchun Jiang , Dongxian Li , Xianzhi Meng , Arthur J. Ragauskas

This study focuses on developing advanced oxygen-containing biofuels with high furan, cyclic ketone, and ethanol content from holocellulose and cellulosic wastes. To achieve this, we employed an integrated process that combined hydropyrolysis and vapor-phase hydrodeoxygenation using Pd/Al2O3 as a catalyst. In the first stage, the non-catalytic hydropyrolysis of hemicellulose resulted in furfural and acetic acid fractions that were effectively converted into furans, cyclic ketones, and ethanol in the second-stage reactor over Pd/Al2O3 under 0.3 MPa H2. We found that a hydropyrolysis temperature of 440 °C in the first stage reactor resulted in the highest yield of oxygen-containing biofuels (171.1 mg/g) with 89.2% hemicellulose conversion. However, increasing the hydrodeoxygenation temperature in the second stage reactor reduced the yield of oxygen-containing biofuels, and at 400 °C, excess deoxygenation led to hydrocarbon production. The Pd/Al2O3 catalyst demonstrated high stability during the vapor-phase hydrodeoxygenation of primary furfural and acetic acid intermediates, with only 2.1% coke formation after three reaction cycles. This scalable process enables the conversion of various cellulosic wastes into advanced oxygen-containing biofuels, with considerable total yields. Our findings suggest that this integrated process holds great promise for converting biomass waste into advanced oxygen-containing biofuels.



中文翻译:

利用 Pd/Al2O3 集成加氢热解和气相加氢脱氧工艺,从纤维素废物中生产先进的含氧生物燃料

本研究的重点是从全纤维素和纤维素废物中开发具有高呋喃、环酮和乙醇含量的先进含氧生物燃料。为了实现这一目标,我们采用了一种集成工艺,使用 Pd/Al 2 O 3作为催化剂,将加氢热解和气相加氢脱氧结合起来。在第一阶段,半纤维素的非催化加氢热解产生糠醛和乙酸馏分,这些馏分在第二阶段反应器中在Pd/Al 2 O 3在0.3 MPa H 2 下有效转化为呋喃、环酮和乙醇。。我们发现,第一级反应器中 440 °C 的加氢热解温度产生了最高的含氧生物燃料产量(171.1 mg/g),半纤维素转化率为 89.2%。然而,提高第二级反应器中的加氢脱氧温度降低了含氧生物燃料的产率,并且在400℃时,过量脱氧导致碳氢化合物的产生。Pd/Al 2 O 3该催化剂在初级糠醛和乙酸中间体的气相加氢脱氧过程中表现出高稳定性,三个反应循环后仅形成 2.1% 的焦炭。这种可扩展的工艺能够将各种纤维素废物转化为先进的含氧生物燃料,并具有可观的总产量。我们的研究结果表明,这种集成过程对于将生物质废物转化为先进的含氧生物燃料具有巨大的前景。

更新日期:2023-09-09
down
wechat
bug