当前位置: X-MOL 学术Math. Logic Q. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
When cardinals determine the power set: inner models and Härtig quantifier logic
Mathematical Logic Quarterly ( IF 0.3 ) Pub Date : 2023-09-11 , DOI: 10.1002/malq.202200030
Jouko Väänänen 1, 2 , Philip D. Welch 3
Affiliation  

We show that the predicate “x is the power set of y” is Σ 1 ( Card ) $\Sigma _1(\operatorname{Card})$ -definable, if V = L[E] is an extender model constructed from a coherent sequences of extenders, provided that there is no inner model with a Woodin cardinal. Here Card $\operatorname{Card}$ is a predicate true of just the infinite cardinals. From this we conclude: the validities of second order logic are reducible to V I $V_I$ , the set of validities of the Härtig quantifier logic. Further we show that if no L[E] model has a cardinal strong up to one of its ℵ-fixed points, and I $\ell _{I}$ , the Löwenheim number of this logic, is less than the least weakly inaccessible δ, then (i) I $\ell _I$ is a limit of measurable cardinals of K, and (ii) the Weak Covering Lemma holds at δ.

中文翻译:

当基数确定幂集时:内部模型和 Härtig 量词逻辑

我们证明谓词“ x是 y的幂集 ”是 Σ 1 卡片 $\Sigma _1(\operatorname{卡})$ - 可定义,如果 V = L[E] 是由连贯的扩展器序列构造的扩展器模型,前提是不存在具有伍丁基数的内部模型。这里 卡片 $\操作员名称{卡}$ 是一个仅适用于无限基数的谓词。由此我们得出结论:二阶逻辑的有效性可简化为 V $V_I$ ,Härtig 量词逻辑的有效性集。进一步我们表明,如果没有 L[E] 模型具有强到其 ℵ-不动点之一的基数,并且 $\ell_{I}$ ,该逻辑的 Löwenheim 数,小于最小弱不可访问 δ,则 (i) $\ell_I$ 是 K 可测量基数的极限,并且 (ii) 弱覆盖引理在 δ 处成立。
更新日期:2023-09-11
down
wechat
bug