当前位置: X-MOL 学术Comput. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Asynchronous federated learning on heterogeneous devices: A survey
Computer Science Review ( IF 12.9 ) Pub Date : 2023-10-04 , DOI: 10.1016/j.cosrev.2023.100595
Chenhao Xu , Youyang Qu , Yong Xiang , Longxiang Gao

Federated learning (FL) is a kind of distributed machine learning framework, where the global model is generated on the centralized aggregation server based on the parameters of local models, addressing concerns about privacy leakage caused by the collection of local training data. With the growing computational and communication capacities of edge and IoT devices, applying FL on heterogeneous devices to train machine learning models is becoming a prevailing trend. Nonetheless, the synchronous aggregation strategy in the classic FL paradigm, particularly on heterogeneous devices, encounters limitations in resource utilization due to the need to wait for slow devices before aggregation in each training round. Furthermore, the uneven distribution of data across devices (i.e. data heterogeneity) in real-world scenarios adversely impacts the accuracy of the global model. Consequently, many asynchronous FL (AFL) approaches have been introduced across various application contexts to enhance efficiency, performance, privacy, and security. This survey comprehensively analyzes and summarizes existing AFL variations using a novel classification scheme, including device heterogeneity, data heterogeneity, privacy, and security on heterogeneous devices, as well as applications on heterogeneous devices. Finally, this survey reveals rising challenges and presents potentially promising research directions in this under-investigated domain.



中文翻译:

异构设备上的异步联邦学习:一项调查

联邦学习(FL)是一种分布式机器学习框架,根据本地模型的参数在集中聚合服务器上生成全局模型,解决了因收集本地训练数据而引起的隐私泄露问题。随着边缘和物联网设备的计算和通信能力不断增强,在异构设备上应用 FL 来训练机器学习模型正在成为一种流行趋势。尽管如此,经典 FL 范式中的同步聚合策略,特别是在异构设备上,由于在每轮训练中需要等待慢速设备进行聚合,因此在资源利用率方面遇到了限制。此外,数据在设备之间的分布不均匀(即 现实场景中的数据异构性会对全局模型的准确性产生不利影响。因此,在各种应用程序环境中引入了许多异步 FL (AFL) 方法,以提高效率、性能、隐私和安全性。本次调查使用新颖的分类方案全面分析和总结了现有的 AFL 变体,包括异构设备上的设备异构性、数据异构性、隐私性和安全性,以及异构设备上的应用程序。最后,这项调查揭示了这一研究不足的领域日益严峻的挑战,并提出了潜在有前途的研究方向。本次调查使用新颖的分类方案全面分析和总结了现有的 AFL 变体,包括异构设备上的设备异构性、数据异构性、隐私性和安全性,以及异构设备上的应用程序。最后,这项调查揭示了这一研究不足的领域日益严峻的挑战,并提出了潜在有前途的研究方向。本次调查使用新颖的分类方案全面分析和总结了现有的 AFL 变体,包括异构设备上的设备异构性、数据异构性、隐私性和安全性,以及异构设备上的应用程序。最后,这项调查揭示了这一研究不足的领域日益严峻的挑战,并提出了潜在有前途的研究方向。

更新日期:2023-10-04
down
wechat
bug