当前位置: X-MOL 学术Limnol. Oceanogr. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Studying bioluminescence flashes with the ANTARES deep-sea neutrino telescope
Limnology and Oceanography: Methods ( IF 2.7 ) Pub Date : 2023-10-11 , DOI: 10.1002/lom3.10578
Nico Reeb 1, 2 , Sebastian Hutschenreuter 1, 3 , Philipp Zehetner 1, 4, 5 , Torsten Ensslin 1, 4 , A. Albert 6, 7 , S. Alves 8 , M. André 9 , M. Anghinolfi 10 , G. Anton 11 , M. Ardid 12 , J.‐J. Aubert 13 , J. Aublin 14 , B. Baret 14 , S. Basa 15 , B. Belhorma 16 , M. Bendahman 14, 17 , V. Bertin 13 , S. Biagi 18 , M. Bissinger 11 , J. Boumaaza 17 , M. Bouta 19 , M. C. Bouwhuis 20 , H. Brânzaş 21 , R. Bruijn 20, 22 , J. Brunner 13 , J. Busto 13 , B. Caiffi 10 , A. Capone 23, 24 , L. Caramete 21 , J. Carr 13 , V. Carretero 8 , S. Celli 23, 24 , M. Chabab 25 , T. N. Chau 14 , R. Cherkaoui El Moursli 17 , T. Chiarusi 26 , M. Circella 27 , A. Coleiro 14 , M. Colomer‐Molla 8, 14 , R. Coniglione 18 , P. Coyle 13 , A. Creusot 14 , A. F. Díaz 28 , G. de Wasseige 14 , A. Deschamps 29 , C. Distefano 18 , I. Di Palma 23, 24 , A. Domi 10, 30 , C. Donzaud 14, 31 , D. Dornic 13 , D. Drouhin 6, 7 , T. Eberl 11 , T. van Eeden 20 , N. El Khayati 17 , A. Enzenhöfer 13 , P. Fermani 23, 24 , G. Ferrara 18 , F. Filippini 26, 32 , L. Fusco 13 , Y. Gatelet 14 , P. Gay 14, 33 , H. Glotin 34 , R. Gozzini 11 , R. Gracia Ruiz 20 , K. Graf 11 , C. Guidi 10, 30 , S. Hallmann 11 , H. van Haren 35 , A. J. Heijboer 20 , Y. Hello 29 , J. J. Hernández‐Rey 8 , J. Hößl 11 , J. Hofestädt 11 , F. Huang 6 , G. Illuminati 14, 26, 32 , C. W. James 36 , B. Jisse‐Jung 20 , M. de Jong 20, 37 , P. de Jong 20 , M. Jongen 20 , M. Kadler 38 , O. Kalekin 11 , U. Katz 11 , N. R. Khan‐Chowdhury 8 , A. Kouchner 14 , I. Kreykenbohm 39 , V. Kulikovskiy 10 , R. Lahmann 11 , R. Le Breton 14 , D. Lefèvre 40, 41 , E. Leonora 42 , G. Levi 26, 32 , M. Lincetto 13 , D. Lopez‐Coto 43 , S. Loucatos 14, 44 , L. Maderer 14 , J. Manczak 8 , M. Marcelin 15 , A. Margiotta 26, 32 , A. Marinelli 45 , J. A. Martínez‐Mora 12 , K. Melis 20, 22 , P. Migliozzi 45 , A. Moussa 19 , R. Muller 20 , L. Nauta 20 , S. Navas 43 , E. Nezri 15 , B. Ó Fearraigh 20 , M. Organokov 6 , G. E. Păvălaş 21 , C. Pellegrino 26, 46, 47 , M. Perrin‐Terrin 13 , P. Piattelli 18 , C. Pieterse 8 , C. Poirè 12 , V. Popa 21 , T. Pradier 6 , N. Randazzo 42 , S. Reck 11 , G. Riccobene 18 , A. Romanov 10, 30 , A. Sánchez‐Losa 8, 27 , F. Salesa Greus 8 , D. F. E. Samtleben 20, 37 , M. Sanguineti 10, 30 , P. Sapienza 18 , J. Schnabel 11 , J. Schumann 11 , F. Schüssler 44 , M. Spurio 26, 32 , Th. Stolarczyk 44 , M. Taiuti 10, 30 , Y. Tayalati 17 , S.J. Tingay 36 , B. Vallage 14, 44 , V. Van Elewyck 14, 48 , F. Versari 14, 26, 32 , S. Viola 18 , D. Vivolo 45, 49 , J. Wilms 39 , S. Zavatarelli 10 , A. Zegarelli 23, 24 , J. D. Zornoza 8 , J. Zúñiga 8 ,
Affiliation  

We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.

中文翻译:

使用 ANTARES 深海中微子望远镜研究生物发光闪光

我们开发了一种新技术,利用水下中微子望远镜提供的大量数据集来获取深海生物发光的信息。望远镜的被动性质为我们提供了独特的机会来推断生物发光生物体的信息,而无需主动干扰它们。我们提出了一种统计方法,使我们能够重建个体生物体的光发射,以及它们的位置和运动。建立了数学模型来描述水下中微子望远镜的测量过程和生物有机体的信号产生。度量高斯变分推理算法用于使用光电倍增管记录的光子计数来重建模型参数。我们将此方法应用于合成数据集和 ANTARES 中微子望远镜收集的数据。该望远镜距离法国海岸 40 公里,固定在海底 2475 米深处。合成数据的运行表明我们可以模拟生物体发出的生物发光闪光。此外,我们发现光源定位的空间分辨率很大程度上取决于望远镜的配置。探测器效率和水的衰减长度的精确测量对于重建光发射至关重要。最后,ANTARES 数据的应用揭示了使用中微子望远镜数据的生物发光生物体的首次定位。
更新日期:2023-10-11
down
wechat
bug