当前位置: X-MOL 学术Regul. Chaot. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linear Stability of an Elliptic Relative Equilibrium in the Spatial $$n$$ -Body Problem via Index Theory
Regular and Chaotic Dynamics ( IF 1.4 ) Pub Date : 2023-10-20 , DOI: 10.1134/s1560354723040135
Xijun Hu , Yuwei Ou , Xiuting Tang

It is well known that a planar central configuration of the \(n\)-body problem gives rise to a solution where each particle moves in a Keplerian orbit with a common eccentricity \(\mathfrak{e}\in[0,1)\). We call this solution an elliptic relative equilibrium (ERE for short). Since each particle of the ERE is always in the same plane, it is natural to regard it as a planar \(n\)-body problem. But in practical applications, it is more meaningful to consider the ERE as a spatial \(n\)-body problem (i. e., each particle belongs to \(\mathbb{R}^{3}\)). In this paper, as a spatial \(n\)-body problem, we first decompose the linear system of ERE into two parts, the planar and the spatial part. Following the Meyer – Schmidt coordinate [19], we give an expression for the spatial part and further obtain a rigorous analytical method to study the linear stability of the spatial part by the Maslov-type index theory. As an application, we obtain stability results for some classical ERE, including the elliptic Lagrangian solution, the Euler solution and the \(1+n\)-gon solution.



中文翻译:

空间 $$n$$ 中椭圆相对平衡的线性稳定性 - 基于指数理论的体问题

众所周知,\(n\)体问题的平面中心配置产生了一个解决方案,其中每个粒子在具有共同偏心率的开普勒轨道上移动\(\mathfrak{e}\in[0,1) \)。我们将此解称为椭圆相对平衡(简称 ERE)。由于 ERE 的每个粒子总是在同一平面上,因此很自然地将其视为平面\(n\)体问题。但在实际应用中,将 ERE 视为空间\(n\)体问题(即每个粒子属于\(\mathbb{R}^{3}\) )更有意义。在本文中,作为一个空间\(n\)体问题,我们首先将ERE线性系统分解为平面和空间两部分。继Meyer-Schmidt坐标[19]之后,我们给出了空间部分的表达式,并进一步通过Maslov型指数理论得到了研究空间部分线性稳定性的严格解析方法。作为应用,我们获得了一些经典 ERE 的稳定性结果,包括椭圆拉格朗日解、欧拉解和\(1+n\)边形解。

更新日期:2023-10-22
down
wechat
bug