当前位置: X-MOL 学术Trends Environ. Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonmetal-doped quantum dot-based fluorescence sensing facilitates the monitoring of environmental contaminants
Trends in Environmental Analytical Chemistry ( IF 11.2 ) Pub Date : 2023-10-21 , DOI: 10.1016/j.teac.2023.e00218
Hong Wu , Jian-Hong Li , Wei-Cheng Yang , Ting Wen , Jie He , Yang-Yang Gao , Ge-Fei Hao , Wen-Chao Yang

Environmental pollution is the main threatening factor to human health, survival and global sustainable development. Achieving rapid, sensitive detection of contaminants is extremely important for timely environmental pollution monitoring and treatment. Quantum dot (QD) probes have become a common method for the detection of contaminants. In particular, the development of QDs based on nonmetallic element-doped carbon materials QDs and other nonmetallic doped Si QDs, MoOx QDs, MoS2 QDs, and MXene QDs provides a more convenient and effective means of detecting pollutants. However, a comprehensive summary of the application of nonmetal-doped QD probes for contaminant detection is still lacking. To address this issue, in the present work we mainly categorize different nonmetal-doped QDs into “top-down” and “bottom-up” strategies based on their preparation methods. QD probes based on nonmetal doping have unique optical properties, such as a narrow excitation spectrum, optical tunability, high fluorescence quantum yield (QY), and fluorescence stability. Fluorescence sensing technology can be realized through sensing mechanisms such as fluorescence/dynamic quenching, photoinduced electron transfer (PET), internal filtering effect (IFE), and fluorescence resonance energy transfer (FRET). Considering the ease of implementation, operation, and immediate response of fluorescence sensing technology, it has been widely used in research for the detection of environmental pollutants. We have found that fluorescence sensing technology based on nonmetal-doped QD probes can achieve rapid detection of pollutants (such as heavy metals in water or food, harmful nonmetallic ions, organic pesticides, and antibiotic residues), and its limit of detection (LOD) can reach the picomolar level for trace detection. In addition, the fluorescence sensing technology of nonmetallic QD probes can be combined with smart devices to realize real-time monitoring of pollutants. Our work provides additional strategies for developing nonmetal-doped QD probe-based detection of contaminants and advancing future environmental governance.



中文翻译:

基于非金属掺杂量子点的荧光传感有助于环境污染物的监测

环境污染是人类健康、生存和全球可持续发展的主要威胁因素。实现污染物的快速、灵敏检测对于及时进行环境污染监测和治理极为重要。量子点 (QD) 探针已成为检测污染物的常用方法。特别是基于非金属元素掺杂碳材料量子点和其他非金属掺杂Si量子点、MoOx量子点、MoS 2量子点、MXene量子点的发展,为污染物检测提供了更加便捷有效的手段。然而,对于非金属掺杂量子点探针在污染物检测中的应用仍然缺乏全面的总结。为了解决这个问题,在目前的工作中,我们主要根据其制备方法将不同的非金属掺杂量子点分为“自上而下”和“自下而上”策略。基于非金属掺杂的量子点探针具有独特的光学特性,如窄激发光谱、光学可调性、高荧光量子产率(QY)和荧光稳定性。荧光传感技术可以通过荧光/动态猝灭、光致电子转移(PET)、内部过滤效应(IFE)和荧光共振能量转移(FRET)等传感机制来实现。考虑到荧光传感技术易于实施、操作和即时响应,它已广泛应用于环境污染物检测的研究中。我们发现基于非金属掺杂QD探针的荧光传感技术可以实现污染物(如水或食物中的重金属、有害非金属离子、有机农药和抗生素残留)的快速检测及其检测限(LOD)可以达到皮摩尔水平进行痕量检测。此外,非金属QD探针的荧光传感技术可以与智能设备结合,实现污染物的实时监测。我们的工作为开发基于非金属掺杂量子点探针的污染物检测和推进未来环境治理提供了额外的策略。

更新日期:2023-10-21
down
wechat
bug