当前位置: X-MOL 学术J. Astrophys. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamical orbital evolution of asteroids and planetesimals across distinct chemical reservoirs due to accretion growth of planets in the early solar system
Journal of Astrophysics and Astronomy ( IF 1.1 ) Pub Date : 2023-11-11 , DOI: 10.1007/s12036-023-09979-z
SANDEEP SAHIJPAL

N-body numerical simulations code for the orbital motion of asteroids/planetesimals within the asteroid belt under the gravitational influence of the Sun and the accreting planets, has been developed. The aim is to make qualitative, and to an extent a semi-quantitative argument, regarding the possible extent of radial mixing and homogenization of planetesimal reservoirs of the two observed distinct spectral types, viz., the S- and C-types, across the heliocentric distances due to their dynamical orbital evolution, thereby, eventually leading to the possible accretion of asteroids with chemically diverse constituents. The spectral S- and C-type asteroids are broadly considered as the parent bodies of the two observed major meteoritic dichotomy classes, namely the non-carbonaceous (NC) and carbonaceous (CC) meteorites, respectively. The present analysis is performed to understand the evolution of the observed dichotomy and its implications due to the nebula and early planetary processes during the initial 10 Myr (million years). The homogenization across the two classes is studied in context to the accretion timescales of the planetesimals with respect to the half-life of the potent planetary heat source, 26Al. The accretion over a timescale of ~1.5 Myr, possibly resulted in the planetary-scale differentiation of planetesimals to produce CC and NC achondrites and iron meteorite parent bodies, whereas the prolonged accretion over a timescale of 2–5 Myr resulted in the formation of CC and NC chondrites. Our simulation results indicate a significant role of the initial eccentricities and the masses of the accreting giant planets, specifically, Jupiter and Saturn, in triggering the eccentricity churning of the planetesimals across the radial distances. The rapid accretion of the giant planets with appropriate eccentricities, critically influences the triggering of the orbital resonances that are in turn responsible for the radial mixing of the two distinct chemical reservoirs across early solar system. This would influence the chemical composition and mixing of the various planetary reservoirs. The observed dichotomy among the NC and CC reservoirs can be preserved within the initial 5 Myr in the early solar system in case the accretion of the two giant planets is prolonged. The present work provides a semi-quantitative formulation in terms of radial homogenization. A rigorous computational formulation of the evolving ensemble of distinct chemical reservoirs is beyond the scope of the present computational work.



中文翻译:

由于早期太阳系中行星的吸积生长,小行星和星子在不同化学库中的动态轨道演化

在太阳和吸积行星的引力影响下,小行星带内小行星/星子的轨道运动的N体数值模拟代码已经开发出来。目的是就两种观察到的不同光谱类型(即 S 型和 C 型)的星子储存库的径向混合和均匀化的可能程度进行定性,并在某种程度上进行半定量论证。由于其动态轨道演化而产生的日心距离,最终导致具有不同化学成分的小行星可能的吸积。光谱 S 型和 C 型小行星被广泛认为是观察到的两个主要陨石二分类的母体,即分别为非碳质 (NC) 和碳质 (CC) 陨石。进行本分析是为了了解所观察到的二分法的演变及其在最初 10 Myr(百万年)期间由于星云和早期行星过程而产生的影响。这两类的均质化是在与有效行星热源26 Al 的半衰期有关的星子吸积时间尺度的背景下研究的。在~1.5 Myr的时间尺度上的吸积,可能导致行星尺度的星子分化,产生CC和NC无球粒陨石和铁陨石母体,而在2-5 Myr的时间尺度上的长时间吸积导致了CC的形成和 NC 球粒陨石。我们的模拟结果表明,吸积巨行星(特别是木星和土星)的初始偏心率和质量在触发星子在径向距离上的偏心率搅动方面发挥着重要作用。具有适当偏心率的巨行星的快速吸积,严重影响了轨道共振的触发,而轨道共振反过来又导致了早期太阳系中两个不同化学物质库的径向混合。这将影响各种行星储层的化学成分和混合。如果两颗巨行星的吸积时间延长,观察到的 NC 和 CC 储层之间的二分法可以在早期太阳系最初的 5 Myr 内得到保留。目前的工作提供了径向均质化的半定量公式。不同化学储库不断演化的集合的严格计算公式超出了当前计算工作的范围。

更新日期:2023-11-12
down
wechat
bug